清晰 发表于 2025-3-28 16:43:13

http://reply.papertrans.cn/89/8844/884355/884355_41.png

Adrenaline 发表于 2025-3-28 22:31:44

Synthetic-to-Real Domain Adaptation and Refinement,to ensure domain adaptation, while the data remains as synthetic as it has been. We will discuss neural architectures for both approaches, including many models based on generative adversarial networks.

opprobrious 发表于 2025-3-28 23:41:03

Springer Optimization and Its Applicationshttp://image.papertrans.cn/t/image/884355.jpg

失望昨天 发表于 2025-3-29 05:25:56

http://reply.papertrans.cn/89/8844/884355/884355_44.png

APNEA 发表于 2025-3-29 09:23:41

Sergey I. NikolenkoThe first book about synthetic data, an important field which is rapidly rising in popularity throughout machine learning.Provides a wide survey of several different fields where synthetic data is or

Licentious 发表于 2025-3-29 11:50:01

978-3-030-75180-7The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl

jet-lag 发表于 2025-3-29 18:17:36

Synthetic Data for Deep Learning978-3-030-75178-4Series ISSN 1931-6828 Series E-ISSN 1931-6836

形上升才刺激 发表于 2025-3-29 22:29:01

http://reply.papertrans.cn/89/8844/884355/884355_48.png

agonist 发表于 2025-3-30 01:52:36

http://reply.papertrans.cn/89/8844/884355/884355_49.png

放肆的你 发表于 2025-3-30 07:17:32

http://reply.papertrans.cn/89/8844/884355/884355_50.png
页: 1 2 3 4 [5] 6
查看完整版本: Titlebook: Synthetic Data for Deep Learning; Sergey I. Nikolenko Book 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license t