清楚说话 发表于 2025-3-26 23:46:10
http://reply.papertrans.cn/89/8840/883957/883957_31.png仲裁者 发表于 2025-3-27 04:24:42
Toshiyuki Kobayashi,Birgit Speh highlighting gang behaviours and processes outside the scopThis book brings a new spatial analysis to gang territories through the concept of the gang assemblage- the variety of actors, contexts, and practices that create and maintain these spaces. This conceptualization helps overcome the tendency拖网 发表于 2025-3-27 08:15:40
http://reply.papertrans.cn/89/8840/883957/883957_33.png信条 发表于 2025-3-27 11:00:52
https://doi.org/10.1007/978-981-13-2901-2Symmetry breaking operator; branching law; Gross-Prasad conjecture; automorphic form; conformal geometryGlucocorticoids 发表于 2025-3-27 13:52:52
http://reply.papertrans.cn/89/8840/883957/883957_35.pngmosque 发表于 2025-3-27 19:12:20
http://reply.papertrans.cn/89/8840/883957/883957_36.png寡头政治 发表于 2025-3-28 00:48:46
http://reply.papertrans.cn/89/8840/883957/883957_37.png假 发表于 2025-3-28 02:39:33
Symmetry Breaking for Irreducible Representations with Infinitesimal Character ,In this chapter, we focus on symmetry breaking operators from . representations Π of . = .(. + 1, 1) with.-infinitesimal character.. to . representations . of the subgroup . = .(., 1) with .-infinitesimal character ..Glutinous 发表于 2025-3-28 08:23:47
Regular Symmetry Breaking Operators,Let..(., .) be a principal series representation of . = .(. + 1, 1) realized in the Fréchet space ., and..(., .) that of . = .(., 1) realized in . as in Section ..Synovial-Fluid 发表于 2025-3-28 14:19:23
Differential Symmetry Breaking Operators,In this chapter, we analyze the space . ofdifferential symmetry breaking operators between principal series representations of . = .(. + 1, 1) and . = .(., 1) for arbitrary . and . with[. : .]≠0.