cobble 发表于 2025-3-21 17:41:30
书目名称Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0883952<br><br> <br><br>书目名称Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0883952<br><br> <br><br>书目名称Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0883952<br><br> <br><br>书目名称Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0883952<br><br> <br><br>书目名称Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0883952<br><br> <br><br>书目名称Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0883952<br><br> <br><br>书目名称Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0883952<br><br> <br><br>书目名称Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0883952<br><br> <br><br>书目名称Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0883952<br><br> <br><br>书目名称Symmetry Analysis and Exact Solutions of Equations of Nonlinear Mathematical Physics读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0883952<br><br> <br><br>钩针织物 发表于 2025-3-21 21:40:21
Mathematics and Its Applicationshttp://image.papertrans.cn/t/image/883952.jpg木讷 发表于 2025-3-22 00:33:26
https://doi.org/10.1007/978-94-017-3198-0Theoretical physics; algebra; calculus; differential equation; mathematical physics; operator; partial dif痴呆 发表于 2025-3-22 05:36:07
Euclid and Galilei Groups and Nonlinear PDEs for Scalar Fields,In the present chapter we describe a wide class of nonlinear PDEs for scalar fields invariant under Euclid, Galilei, or larger groups. For some of such equations we construct multiparameter families of exact solutions.相符 发表于 2025-3-22 08:49:05
Poincare-Invariant Nonlinear Scalar Equations,al and tangent symmetry of the relativistic Hamilton equation, of the nonlinear d’Alembert equation, of the Euler-Lagrange-Born-Infeld equation, the Monge-Ampere equation, and some other PDEs. For this purpose the Lie method has been used with the exception of Sec. 1.3, where the symmetry of the polaggressor 发表于 2025-3-22 14:20:13
Systems of PDEs Invariant Under Galilei Group,ations (such as the extended Galilei group, the Schrödinger group). Sets of Sch(1,3)- and G(1,3)-nonequivalent ansatze are constructed. A wide class of linear and nonlinear Sch(1,3)-invariant systems of PDEs is described. Lame equations are studied: superalgebra of symmetry is found and a Galilei-inVirtues 发表于 2025-3-22 17:11:26
http://reply.papertrans.cn/89/8840/883952/883952_7.pngEndearing 发表于 2025-3-23 01:03:23
http://reply.papertrans.cn/89/8840/883952/883952_8.png江湖郎中 发表于 2025-3-23 02:12:14
http://reply.papertrans.cn/89/8840/883952/883952_9.png举止粗野的人 发表于 2025-3-23 07:01:18
Poincare-Invariant Nonlinear Scalar Equations,onge-Ampere equation, and some other PDEs. For this purpose the Lie method has been used with the exception of Sec. 1.3, where the symmetry of the polywave equation is investigated by the operator method expounded in Sec. 5.5.