我在争斗志 发表于 2025-3-21 17:41:30
书目名称Symbolic Dynamics of Trapezoidal Maps影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0883826<br><br> <br><br>书目名称Symbolic Dynamics of Trapezoidal Maps影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0883826<br><br> <br><br>书目名称Symbolic Dynamics of Trapezoidal Maps网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0883826<br><br> <br><br>书目名称Symbolic Dynamics of Trapezoidal Maps网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0883826<br><br> <br><br>书目名称Symbolic Dynamics of Trapezoidal Maps被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0883826<br><br> <br><br>书目名称Symbolic Dynamics of Trapezoidal Maps被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0883826<br><br> <br><br>书目名称Symbolic Dynamics of Trapezoidal Maps年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0883826<br><br> <br><br>书目名称Symbolic Dynamics of Trapezoidal Maps年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0883826<br><br> <br><br>书目名称Symbolic Dynamics of Trapezoidal Maps读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0883826<br><br> <br><br>书目名称Symbolic Dynamics of Trapezoidal Maps读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0883826<br><br> <br><br>排斥 发表于 2025-3-21 20:33:44
Introduction,o be quite descriptive of the manner in which points are moved within and between subintervals of the unit interval by the action of repeated composition (generation of iterates) of a trapezoidal map; hence, its use in the title.难取悦 发表于 2025-3-22 02:11:58
Endomorphisms of R Associated with Symmetric Line-Pairs in R2,f obtained by repeated composition of the two lines ζx and ζ(2–x) occurring in Eq. (1.1), and of their inverses. Thus, for each x ε R, and for each fixed real parameter ζ with domain R-{0}, the transformations L. and R. are defined, respectively, by..AMOR 发表于 2025-3-22 05:03:01
http://reply.papertrans.cn/89/8839/883826/883826_4.pngBLANK 发表于 2025-3-22 09:04:23
Proof of Theorem 4 ,equences beginning with R. (ℓ ≥ 2) on the right, the proof of the theorem has already been given in the proof of Theorem 5 . (b) The proof of this theorem draws on Theorems 4 , Corollary . (see the Remarks at the end of Chapter 7), the results of the previous chapter summar杠杆 发表于 2025-3-22 14:27:00
,Some Extensions to Arbitrary Initial Point a ε I(0,2), with initial point a=1 to the general case a ε I(0,2) discussed in the Introduction. Many of the results given earlier for a=1 have an obvious generalization; these are summarized below without detailed proofs, beginning with relations that generalize those of Chapter 2.你正派 发表于 2025-3-22 18:18:24
http://reply.papertrans.cn/89/8839/883826/883826_7.pngmyopia 发表于 2025-3-23 00:03:30
Proof of Theorem 4 ,oped in Appendices B and D. Accordingly, its proof must be regarded as quite difficult. The proof is given in Lemmas 18–19 below, which assert important properties of the .-functions of nonlexical sequences.exacerbate 发表于 2025-3-23 04:33:46
http://reply.papertrans.cn/89/8839/883826/883826_9.pngseduce 发表于 2025-3-23 05:42:57
Mathematics and Its Applicationshttp://image.papertrans.cn/t/image/883826.jpg