母猪 发表于 2025-3-25 04:46:45
https://doi.org/10.1007/978-3-319-73488-0Sustainable Manufacturing; Remanufacturing; Energy-Efficient Manufacturing; Product Lifecycle Managemen窗帘等 发表于 2025-3-25 09:44:25
http://reply.papertrans.cn/89/8835/883433/883433_22.png带伤害 发表于 2025-3-25 14:07:29
http://reply.papertrans.cn/89/8835/883433/883433_23.pngManifest 发表于 2025-3-25 18:21:18
http://reply.papertrans.cn/89/8835/883433/883433_24.pngforthy 发表于 2025-3-25 22:01:53
W. D. Li,K. Xia,L. Gao,K. M. Chaoed over .. The triple (.,ρ) or simply ρ is called . over . if the Weil criterion for the convergence of the integral over ../.. of the generalized theta-series .is satisfied. (The subscript . denotes the adelization functor relative to . and ϕ is an arbitrary Schwartz-Bruhat function on .apropos 发表于 2025-3-26 02:33:02
G. Q. Jin,W. D. Li,S. Wang,S. M. Gaoed over .. The triple (.,ρ) or simply ρ is called . over . if the Weil criterion for the convergence of the integral over ../.. of the generalized theta-series .is satisfied. (The subscript . denotes the adelization functor relative to . and ϕ is an arbitrary Schwartz-Bruhat function on .Canyon 发表于 2025-3-26 07:48:14
Kai Xia,Liang Gao,Weidong Li,Kuo-Ming Chaoed over .. The triple (.,ρ) or simply ρ is called . over . if the Weil criterion for the convergence of the integral over ../.. of the generalized theta-series .is satisfied. (The subscript . denotes the adelization functor relative to . and ϕ is an arbitrary Schwartz-Bruhat function on .让空气进入 发表于 2025-3-26 11:34:25
ed over .. The triple (.,ρ) or simply ρ is called . over . if the Weil criterion for the convergence of the integral over ../.. of the generalized theta-series .is satisfied. (The subscript . denotes the adelization functor relative to . and ϕ is an arbitrary Schwartz-Bruhat function on .decode 发表于 2025-3-26 16:31:34
http://reply.papertrans.cn/89/8835/883433/883433_29.pngOphthalmoscope 发表于 2025-3-26 17:05:15
Kai Xia,Liang Gao,Lihui Wang,Weidong Li,Kuo-Ming Chaosimpler; for example, it could have poles of first order on . (see § 1, Subsection 4). If γ. is a basis for the .-dimensional homology of the manifold .., then by Stokes formula for any compact cycle γ ∈ ..(..) the integral (1) is equal to . where the .. are the coefficients of the cycle γ as a comb