讽刺文章 发表于 2025-3-21 18:52:12
书目名称Supergeometry, Super Riemann Surfaces and the Superconformal Action Functional影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0881863<br><br> <br><br>书目名称Supergeometry, Super Riemann Surfaces and the Superconformal Action Functional影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0881863<br><br> <br><br>书目名称Supergeometry, Super Riemann Surfaces and the Superconformal Action Functional网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0881863<br><br> <br><br>书目名称Supergeometry, Super Riemann Surfaces and the Superconformal Action Functional网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0881863<br><br> <br><br>书目名称Supergeometry, Super Riemann Surfaces and the Superconformal Action Functional被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0881863<br><br> <br><br>书目名称Supergeometry, Super Riemann Surfaces and the Superconformal Action Functional被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0881863<br><br> <br><br>书目名称Supergeometry, Super Riemann Surfaces and the Superconformal Action Functional年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0881863<br><br> <br><br>书目名称Supergeometry, Super Riemann Surfaces and the Superconformal Action Functional年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0881863<br><br> <br><br>书目名称Supergeometry, Super Riemann Surfaces and the Superconformal Action Functional读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0881863<br><br> <br><br>书目名称Supergeometry, Super Riemann Surfaces and the Superconformal Action Functional读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0881863<br><br> <br><br>嘲弄 发表于 2025-3-21 22:18:54
Metrics and Gravitinostriple (., ., .) on |.| is sufficient to reconstruct the super Riemann surface .. Supersymmetry of metric and gravitino are interpreted as an infinitesimal change of the embedding .. From this point of view we are able to give a description of the infinitesimal deformations of a super Riemann surface in terms of metric and gravitino.CRACK 发表于 2025-3-22 03:13:56
Book 2019 to understand its symmetries as geometric properties of super Riemann surfaces, which are particular complex super manifolds of dimension 1|1..The first part gives an introduction to the super differential geometry of families of super manifolds. Appropriate generalizations of principal bundles, sm全等 发表于 2025-3-22 08:09:38
http://reply.papertrans.cn/89/8819/881863/881863_4.pngintolerance 发表于 2025-3-22 11:44:22
http://reply.papertrans.cn/89/8819/881863/881863_5.pngAMITY 发表于 2025-3-22 14:02:48
Linear Superalgebraassed over another odd object, it acquires an additional factor − 1..The goal of this chapter is to describe the necessary pieces of linear superalgebra. A good understanding of linear superalgebra is necessary to understand the geometry to be treated in later chapters.medieval 发表于 2025-3-22 19:24:01
http://reply.papertrans.cn/89/8819/881863/881863_7.pngInsulin 发表于 2025-3-22 22:38:31
Super Lie Groupsy of principal bundles in Chap. .. Super Lie groups are of interest to physics as symmetry groups. An early mathematically rigorous treatment of super Lie groups is presented in Kostant (Graded manifolds, graded Lie theory, and prequantization. In: Differential geometrical methods in mathematical phArresting 发表于 2025-3-23 03:28:51
Principal Fiber Bundlespal bundles are frame bundles of vector bundles. Many extra structures on vector bundles, such as metrics or almost complex structures can actually be formulated in terms of a reduction of the structure group of the frame bundle of the vector bundle. The theory of connections on principal bundles shForegery 发表于 2025-3-23 09:09:10
Complex Supermanifoldsatched by smooth families of holomorphic coordinate changes. Consequently, every smooth family of complex supermanifolds has an underlying (real) family of smooth supermanifolds with an almost complex structure. However, not every smooth family of supermanifolds with almost complex structure lead to