评估 发表于 2025-3-21 16:37:51
书目名称Supercomputing影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0881799<br><br> <br><br>书目名称Supercomputing影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0881799<br><br> <br><br>书目名称Supercomputing网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0881799<br><br> <br><br>书目名称Supercomputing网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0881799<br><br> <br><br>书目名称Supercomputing被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0881799<br><br> <br><br>书目名称Supercomputing被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0881799<br><br> <br><br>书目名称Supercomputing年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0881799<br><br> <br><br>书目名称Supercomputing年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0881799<br><br> <br><br>书目名称Supercomputing读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0881799<br><br> <br><br>书目名称Supercomputing读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0881799<br><br> <br><br>作呕 发表于 2025-3-21 20:54:12
http://reply.papertrans.cn/89/8818/881799/881799_2.png傲慢人 发表于 2025-3-22 02:37:26
http://reply.papertrans.cn/89/8818/881799/881799_3.png饮料 发表于 2025-3-22 06:01:58
http://reply.papertrans.cn/89/8818/881799/881799_4.pngSPALL 发表于 2025-3-22 11:07:37
http://reply.papertrans.cn/89/8818/881799/881799_5.png抱狗不敢前 发表于 2025-3-22 15:54:49
Parallel Box-Counting Method for Evaluating the Fractal Dimension of Analytically Defined Curvesgments with a billion boxes (box size is .). The graphs depicting an increase in acceleration of parallel code performance with decreasing the box size and increasing the number of curve segments are shown. It is concluded that the efficiency of using the GPU begins with three million boxes and grownegotiable 发表于 2025-3-22 17:05:35
http://reply.papertrans.cn/89/8818/881799/881799_7.pngSEEK 发表于 2025-3-22 22:30:53
http://reply.papertrans.cn/89/8818/881799/881799_8.png可互换 发表于 2025-3-23 03:27:45
alyze the evaluation performance using various metrics such as accuracy, loss, and f1 score. The proposed work recorded 100, 90, and 88.23% accuracy for training, validation, and test sets, respectively. The f1 score for the test set is estimated at 87.78% with a 0.50 logloss score.亲爱 发表于 2025-3-23 08:44:42
http://reply.papertrans.cn/89/8818/881799/881799_10.png