Precise
发表于 2025-3-21 18:02:39
书目名称Sub-Riemannian Geometry影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0881222<br><br> <br><br>书目名称Sub-Riemannian Geometry影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0881222<br><br> <br><br>书目名称Sub-Riemannian Geometry网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0881222<br><br> <br><br>书目名称Sub-Riemannian Geometry网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0881222<br><br> <br><br>书目名称Sub-Riemannian Geometry被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0881222<br><br> <br><br>书目名称Sub-Riemannian Geometry被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0881222<br><br> <br><br>书目名称Sub-Riemannian Geometry年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0881222<br><br> <br><br>书目名称Sub-Riemannian Geometry年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0881222<br><br> <br><br>书目名称Sub-Riemannian Geometry读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0881222<br><br> <br><br>书目名称Sub-Riemannian Geometry读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0881222<br><br> <br><br>
Medicaid
发表于 2025-3-21 22:00:50
Stabilization of controllable systems,The goal of this paper is to present a partial survey on the local stabilizability of locally controllable systems.
休息
发表于 2025-3-22 00:48:28
http://reply.papertrans.cn/89/8813/881222/881222_3.png
心痛
发表于 2025-3-22 04:37:26
http://reply.papertrans.cn/89/8813/881222/881222_4.png
BILE
发表于 2025-3-22 11:50:18
978-3-0348-9946-8Birkhäuser Verlag 1996
Obstruction
发表于 2025-3-22 14:19:23
http://reply.papertrans.cn/89/8813/881222/881222_6.png
arbovirus
发表于 2025-3-22 20:35:26
0743-1643 Overview: 978-3-0348-9946-8978-3-0348-9210-0Series ISSN 0743-1643 Series E-ISSN 2296-505X
群居男女
发表于 2025-3-22 22:48:17
The tangent space in sub-Riemannian geometry,roups with dilations. In the classical, Riemannian, case, they are indeed vector spaces, that is, abelian groups with dilations. Actually, the above is true only for regular points. At singular points, instead of nilpotent Lie groups one gets quotient spaces . of such groups ..
Chronic
发表于 2025-3-23 04:33:28
http://reply.papertrans.cn/89/8813/881222/881222_9.png
sulcus
发表于 2025-3-23 09:21:13
The tangent space in sub-Riemannian geometry,f tangent spaces to a metric space, and they turn out to be sub-Riemannian manifolds. Moreover, they come with an algebraic structure: nilpotent Lie groups with dilations. In the classical, Riemannian, case, they are indeed vector spaces, that is, abelian groups with dilations. Actually, the above i