EVADE 发表于 2025-3-23 11:12:01

Complexity Analysispplied to structures simplify to prove various classical results: undecidability of predicate logic and NP-completeness of propositional logic, Kleene’s RECURSION and ENUMERATION Theorems, Turing’s concept of UNIVERSAL MACHINES. Look-Compute-Move algorithms are explained as characteristic example fo

acquisition 发表于 2025-3-23 16:07:07

Complexity Analysis’s RECURSION and ENUMERATION Theorems, Turing’s concept of UNIVERSAL MACHINES. Look-Compute-Move algorithms are explained as characteristic example for COMPUTING OVER STRUCTURES (here: with complex topological environments).

Allodynia 发表于 2025-3-23 18:03:01

http://reply.papertrans.cn/89/8804/880355/880355_13.png

syncope 发表于 2025-3-23 23:25:00

http://reply.papertrans.cn/89/8804/880355/880355_14.png

Irksome 发表于 2025-3-24 06:13:52

http://reply.papertrans.cn/89/8804/880355/880355_15.png

图表证明 发表于 2025-3-24 07:37:42

https://doi.org/10.1007/978-3-031-54358-6Theory of Computation; Programming Theory; Program Logic; Computational Complexity; Control Structure; Co

artless 发表于 2025-3-24 13:29:41

http://reply.papertrans.cn/89/8804/880355/880355_17.png

捐助 发表于 2025-3-24 16:23:11

http://reply.papertrans.cn/89/8804/880355/880355_18.png

捏造 发表于 2025-3-24 22:08:39

Computational Data, Operations, Statesproperties and relations. It is explained how these structures by the underlying concept of abstraction and refinement represent a comprehensive notion of STATE of virtual or mechanical computing systems, at whatever level of detail.

收藏品 发表于 2025-3-24 23:39:43

Logical Structure of State-Change Actionsnments (PGAs) that update memory locations (function table entries) in structures of whatever desired level of abstraction. To illustrate domain-specific extensions of those fundamental constructs of computing a simple WORKSPACE INCREASE mechanism is added to PGAs.
页: 1 [2] 3 4 5
查看完整版本: Titlebook: Structures of Computing; A Guide to Practice- Egon Börger,Vincenzo Gervasi Textbook 2024 The Editor(s) (if applicable) and The Author(s), u