可入到 发表于 2025-3-21 18:45:43

书目名称Structural Health Monitoring and Engineering Structures影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0879937<br><br>        <br><br>书目名称Structural Health Monitoring and Engineering Structures影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0879937<br><br>        <br><br>书目名称Structural Health Monitoring and Engineering Structures网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0879937<br><br>        <br><br>书目名称Structural Health Monitoring and Engineering Structures网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0879937<br><br>        <br><br>书目名称Structural Health Monitoring and Engineering Structures被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0879937<br><br>        <br><br>书目名称Structural Health Monitoring and Engineering Structures被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0879937<br><br>        <br><br>书目名称Structural Health Monitoring and Engineering Structures年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0879937<br><br>        <br><br>书目名称Structural Health Monitoring and Engineering Structures年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0879937<br><br>        <br><br>书目名称Structural Health Monitoring and Engineering Structures读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0879937<br><br>        <br><br>书目名称Structural Health Monitoring and Engineering Structures读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0879937<br><br>        <br><br>

opprobrious 发表于 2025-3-21 22:39:37

Estimation of Cable Tension with Unknown Parameters Using Artificial Neural Networksas applied to identify tensions in cables of an existing bridge as a case study. Results showed thatthe suggested that suggested methodology is highly capable of identifying cable tension with unknown cable bending stiffness and uncertain boundary conditions.

Initial 发表于 2025-3-22 03:25:29

http://reply.papertrans.cn/88/8800/879937/879937_3.png

亚当心理阴影 发表于 2025-3-22 08:23:31

Application of Artificial Neural Network for Recovering GPS—RTK Data in the Monitoring of Cable-Staye were extracted for study. The proposed method results are compared with actual monitoring data to evaluate the accuracy. These results indicate that GPS—RTK data supplemented by the ANN method completely ensure accuracy and reliability.

追逐 发表于 2025-3-22 10:14:24

http://reply.papertrans.cn/88/8800/879937/879937_5.png

colostrum 发表于 2025-3-22 14:48:45

http://reply.papertrans.cn/88/8800/879937/879937_6.png

未开化 发表于 2025-3-22 21:05:38

Multilayer Perceptron Neural Network for Damage Identification Based on Dynamic Analysisealth of various structures. These methods are considered as efficient and reliable non-destructive techniques for damage detection of structures. In this study, a novel model is developed to predict damage severity in beam-like structures based on the finite element method (FEM) and multilayer perc

VERT 发表于 2025-3-22 21:41:33

Optimization of Processing Parameters of Primary Phase Particle Size of Cooling Slope Process for Seriments have been carried out following central composite design. Three-key process variables at five different levels (pouring temperature, slope angle, and length of travel of the melt) have been considered for the present experimentation. Regression analysis and analysis of variance (ANOVA) have

有毒 发表于 2025-3-23 01:28:28

http://reply.papertrans.cn/88/8800/879937/879937_9.png

不如乐死去 发表于 2025-3-23 07:38:32

Estimation of Cable Tension with Unknown Parameters Using Artificial Neural Networksble materials and complexity at the cable supports. This paper presents a method for vibration-based cable tension estimation using artificial neural networks (ANNs) regardless of the uncertainties of cable boundary conditions and unknown cable bending stiffness. Finite difference formulation of a d
页: [1] 2 3 4 5 6 7
查看完整版本: Titlebook: Structural Health Monitoring and Engineering Structures; Select Proceedings o Tinh Quoc Bui,Le Thanh Cuong,Samir Khatir Conference proceedi