demote 发表于 2025-3-23 09:47:11
http://reply.papertrans.cn/88/8797/879675/879675_11.png高歌 发表于 2025-3-23 17:46:01
Upper Boundsa plausible upper bound in §2.4 and §3.3; this is discussed further in §6.1. In §6.2 we consider a conjecture of Oseledets (1993), which is related to methods of obtaining fast dynamo growth rates using Fredholm determinants (§6.3). In §6.4 we discuss Arnold’s (1972) suspension of the cat map as a fTOM 发表于 2025-3-23 20:34:13
http://reply.papertrans.cn/88/8797/879675/879675_13.pngCrepitus 发表于 2025-3-24 01:00:56
http://reply.papertrans.cn/88/8797/879675/879675_14.png公司 发表于 2025-3-24 04:29:44
Spectra and Eigenfunctions the perfectly conducting limit. The more abstract literature on spectral theory has had relatively little impact on dynamo theory, however, in part because of the relatively simple discrete spectrum at finite magnetic Reynolds numbers. The discrete eigenvalues largely disappear in the perfectly con杂色 发表于 2025-3-24 09:43:39
http://reply.papertrans.cn/88/8797/879675/879675_16.png大量杀死 发表于 2025-3-24 14:01:16
http://reply.papertrans.cn/88/8797/879675/879675_17.pngCLOT 发表于 2025-3-24 18:30:51
http://reply.papertrans.cn/88/8797/879675/879675_18.png正面 发表于 2025-3-24 22:53:13
Fast Dynamo Action in Flowsr hand there is as yet no mathematical theory powerful enough to prove that fast dynamo action can occur in realistic flows, and much of the progress in the theory of fast dynamos has come from interplay between numerical simulation, modelling, approximation and tentative analysis.加入 发表于 2025-3-24 23:38:10
http://reply.papertrans.cn/88/8797/879675/879675_20.png