法庭 发表于 2025-3-21 16:21:59

书目名称Strategy and Structure of Japanese Enterprises影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0879418<br><br>        <br><br>书目名称Strategy and Structure of Japanese Enterprises影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0879418<br><br>        <br><br>书目名称Strategy and Structure of Japanese Enterprises网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0879418<br><br>        <br><br>书目名称Strategy and Structure of Japanese Enterprises网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0879418<br><br>        <br><br>书目名称Strategy and Structure of Japanese Enterprises被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0879418<br><br>        <br><br>书目名称Strategy and Structure of Japanese Enterprises被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0879418<br><br>        <br><br>书目名称Strategy and Structure of Japanese Enterprises年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0879418<br><br>        <br><br>书目名称Strategy and Structure of Japanese Enterprises年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0879418<br><br>        <br><br>书目名称Strategy and Structure of Japanese Enterprises读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0879418<br><br>        <br><br>书目名称Strategy and Structure of Japanese Enterprises读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0879418<br><br>        <br><br>

松紧带 发表于 2025-3-21 20:22:07

Toyohiro Konozed empirical measure n.(δ.+...+δ.-nP). Let ℓ.(ℱ) be the set of all bounded real functions G on ℱ with norm ‖G‖. := sup. ¦G(f)¦. Let μ(f) := εfdμ for any measure μ. We are interested in central limit theorems where v. converges in law for ‖·‖.. The limit is a Gaussian process G. with mean 0 and cova

可忽略 发表于 2025-3-22 02:31:22

http://reply.papertrans.cn/88/8795/879418/879418_3.png

连累 发表于 2025-3-22 06:31:08

Toyohiro Konozed empirical measure n.(δ.+...+δ.-nP). Let ℓ.(ℱ) be the set of all bounded real functions G on ℱ with norm ‖G‖. := sup. ¦G(f)¦. Let μ(f) := εfdμ for any measure μ. We are interested in central limit theorems where v. converges in law for ‖·‖.. The limit is a Gaussian process G. with mean 0 and cova

使混合 发表于 2025-3-22 08:49:47

Toyohiro Konozed empirical measure n.(δ.+...+δ.-nP). Let ℓ.(ℱ) be the set of all bounded real functions G on ℱ with norm ‖G‖. := sup. ¦G(f)¦. Let μ(f) := εfdμ for any measure μ. We are interested in central limit theorems where v. converges in law for ‖·‖.. The limit is a Gaussian process G. with mean 0 and cova

floaters 发表于 2025-3-22 16:10:20

http://reply.papertrans.cn/88/8795/879418/879418_6.png

违反 发表于 2025-3-22 21:04:27

http://reply.papertrans.cn/88/8795/879418/879418_7.png

legitimate 发表于 2025-3-22 23:11:49

http://reply.papertrans.cn/88/8795/879418/879418_8.png

ERUPT 发表于 2025-3-23 05:12:25

Toyohiro Konozed empirical measure n.(δ.+...+δ.-nP). Let ℓ.(ℱ) be the set of all bounded real functions G on ℱ with norm ‖G‖. := sup. ¦G(f)¦. Let μ(f) := εfdμ for any measure μ. We are interested in central limit theorems where v. converges in law for ‖·‖.. The limit is a Gaussian process G. with mean 0 and cova

SHOCK 发表于 2025-3-23 08:14:46

Toyohiro Konozed empirical measure n.(δ.+...+δ.-nP). Let ℓ.(ℱ) be the set of all bounded real functions G on ℱ with norm ‖G‖. := sup. ¦G(f)¦. Let μ(f) := εfdμ for any measure μ. We are interested in central limit theorems where v. converges in law for ‖·‖.. The limit is a Gaussian process G. with mean 0 and cova
页: [1] 2 3 4 5
查看完整版本: Titlebook: Strategy and Structure of Japanese Enterprises; Toyohiro Kono Book 1984 Macmillan Publishers Limited 1984 Japan.Japanese.strategy.structur