摇摆 发表于 2025-3-23 12:35:00
http://reply.papertrans.cn/88/8794/879302/879302_11.png合适 发表于 2025-3-23 15:40:53
http://reply.papertrans.cn/88/8794/879302/879302_12.pngAerate 发表于 2025-3-23 19:06:08
http://reply.papertrans.cn/88/8794/879302/879302_13.png幸福愉悦感 发表于 2025-3-23 23:05:14
ector bundles on Hopf manifolds, Kuranishi and Teichmüller spaces for LCK manifolds with potential, and harmonic forms on Sasakian and Vaisman manifolds. Each chapter in Parts I and II begins with motivation and historic context for the topics explored and includes numerous exercises for further exMIR 发表于 2025-3-24 04:24:29
http://reply.papertrans.cn/88/8794/879302/879302_15.pngDawdle 发表于 2025-3-24 09:02:00
http://reply.papertrans.cn/88/8794/879302/879302_16.pngAutobiography 发表于 2025-3-24 11:19:59
http://reply.papertrans.cn/88/8794/879302/879302_17.png改良 发表于 2025-3-24 17:11:09
http://reply.papertrans.cn/88/8794/879302/879302_18.pnglethal 发表于 2025-3-24 19:27:51
Marianne Heißbraic geometry, topology, and complex analysis.Discusses ove.This monograph introduces readers to locally conformally Kähler (LCK) geometry and provides an extensive overview of the most current results. A rapidly developing area in complex geometry dealing with non-Kähler manifolds, LCK geometry hcandle 发表于 2025-3-25 00:44:40
http://reply.papertrans.cn/88/8794/879302/879302_20.png