Auditory-Nerve 发表于 2025-3-21 18:43:31

书目名称Stochastic Spectral Theory for Selfadjoint Feller Operators影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0878163<br><br>        <br><br>书目名称Stochastic Spectral Theory for Selfadjoint Feller Operators影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0878163<br><br>        <br><br>书目名称Stochastic Spectral Theory for Selfadjoint Feller Operators网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0878163<br><br>        <br><br>书目名称Stochastic Spectral Theory for Selfadjoint Feller Operators网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0878163<br><br>        <br><br>书目名称Stochastic Spectral Theory for Selfadjoint Feller Operators被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0878163<br><br>        <br><br>书目名称Stochastic Spectral Theory for Selfadjoint Feller Operators被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0878163<br><br>        <br><br>书目名称Stochastic Spectral Theory for Selfadjoint Feller Operators年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0878163<br><br>        <br><br>书目名称Stochastic Spectral Theory for Selfadjoint Feller Operators年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0878163<br><br>        <br><br>书目名称Stochastic Spectral Theory for Selfadjoint Feller Operators读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0878163<br><br>        <br><br>书目名称Stochastic Spectral Theory for Selfadjoint Feller Operators读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0878163<br><br>        <br><br>

群居男女 发表于 2025-3-21 21:34:40

http://reply.papertrans.cn/88/8782/878163/878163_2.png

心神不宁 发表于 2025-3-22 00:56:52

Convergence of Resolvent Differences,d region in.as discussed in the beginning of section C of Chapter 2. This means that we introduce a new self-adjoint operator.given by..in .(., .) with dom (.) = dom (.)We also introduced the operator . in Definition 2.25 as the generator of the Dirichlet semigroup onL.(∑, .):

recession 发表于 2025-3-22 07:37:56

http://reply.papertrans.cn/88/8782/878163/878163_4.png

心神不宁 发表于 2025-3-22 08:58:38

http://reply.papertrans.cn/88/8782/878163/878163_5.png

Enthralling 发表于 2025-3-22 13:49:50

http://reply.papertrans.cn/88/8782/878163/878163_6.png

热情赞扬 发表于 2025-3-22 18:19:00

Perturbations of Free Feller Operators,r-product formula to find a Feynman-Kac representation of the perturbed semigroup. The semi-analytic or semi-stochastic manner begins again with the unperturbed semi-group. Then the potentials are introduced stochastically by verifying the sensibility and the semigroup property of the Feynman-Kac fo

冲突 发表于 2025-3-22 21:43:38

http://reply.papertrans.cn/88/8782/878163/878163_8.png

单调女 发表于 2025-3-23 02:48:02

Hilbert-Schmidt Properties of Resolvent and Semigroup Differences,dly, there will be a potential barrier on F, a closed subset of.The aim of this chapter is to study Hilbert-Schmidt properties for resolvent and/or semigroup differences corresponding to both kinds of perturbations. In part A we consider regular perturbations. The main results and estimates in secti

legitimate 发表于 2025-3-23 08:53:31

Convergence of Resolvent Differences,e Feller operator as introduced in Definition 2.8 (see Theorem 2.5.(a) as well). Here K.is the free Feller operator (see Definition 1.3) and V is a Kato-Feller potential given in Definition 2.1. The operator . is perturbed by a potential of the form ß1ГHere ß is a positive parameter and Г is a close
页: [1] 2 3 4 5
查看完整版本: Titlebook: Stochastic Spectral Theory for Selfadjoint Feller Operators; A Functional Integra Michael Demuth,Jan A. Casteren Book 2000 Birkhäuser Verla