CILIA 发表于 2025-3-21 18:12:23
书目名称Stochastic Processes - Inference Theory影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0878106<br><br> <br><br>书目名称Stochastic Processes - Inference Theory影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0878106<br><br> <br><br>书目名称Stochastic Processes - Inference Theory网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0878106<br><br> <br><br>书目名称Stochastic Processes - Inference Theory网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0878106<br><br> <br><br>书目名称Stochastic Processes - Inference Theory被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0878106<br><br> <br><br>书目名称Stochastic Processes - Inference Theory被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0878106<br><br> <br><br>书目名称Stochastic Processes - Inference Theory年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0878106<br><br> <br><br>书目名称Stochastic Processes - Inference Theory年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0878106<br><br> <br><br>书目名称Stochastic Processes - Inference Theory读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0878106<br><br> <br><br>书目名称Stochastic Processes - Inference Theory读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0878106<br><br> <br><br>2否定 发表于 2025-3-21 20:26:31
Principles of Hypothesis Testing,e fundamental lemma of Neyman-Pearson, in its abstract version due to Grenander, and a few of its applications as well as a technique in reducing composite hypotheses by means of weights. The latter contains a detailed Bayes methodology with iterated priors and some uniformity conditions that admit extensions to stochastic processes.左右连贯 发表于 2025-3-22 02:35:17
Sampling and Regression for Processes,, if they present the essential characteristics of the process on the bigger segment. A basic result in this direction for second order processes is the one due independently to Kotel’nikov and Shannon, and we present some results of this type for the stationary as well as some general processes, in Section 1.加入 发表于 2025-3-22 07:03:48
More on Stochastic Inference,r is composite, several new problems arise. In this chapter, we consider some of these questions in detail. The results again depend on likelihood ratios, and an extension of the Neyman-Pearson-Grenander theorem is once more of importance.侵蚀 发表于 2025-3-22 11:20:44
978-3-319-37434-5Springer International Publishing Switzerland 2014anatomical 发表于 2025-3-22 16:13:57
Stochastic Processes - Inference Theory978-3-319-12172-7Series ISSN 1439-7382 Series E-ISSN 2196-9922浮夸 发表于 2025-3-22 19:31:28
http://reply.papertrans.cn/88/8782/878106/878106_7.pngMETA 发表于 2025-3-22 22:26:55
http://reply.papertrans.cn/88/8782/878106/878106_8.pngGustatory 发表于 2025-3-23 03:40:32
http://reply.papertrans.cn/88/8782/878106/878106_9.pngNATTY 发表于 2025-3-23 05:48:13
Prediction and Filtering of Processes,This chapter is devoted to a different class of applications complementing the preceding work. The first section contains a comparative analysis of general prediction operations relative to a convex loss function, and its relation to projection operators.