脱离 发表于 2025-3-23 11:39:25

http://reply.papertrans.cn/88/8781/878055/878055_11.png

同谋 发表于 2025-3-23 16:39:53

http://reply.papertrans.cn/88/8781/878055/878055_12.png

entail 发表于 2025-3-23 20:31:09

http://reply.papertrans.cn/88/8781/878055/878055_13.png

相容 发表于 2025-3-23 23:11:15

http://reply.papertrans.cn/88/8781/878055/878055_14.png

SMART 发表于 2025-3-24 03:40:25

Stochastic Optimal Transportation Problem,re fixed. In particular, we give the Duality Theorems for the SOTs and a sufficient condition for the finiteness of the minimum in the SOT with given initial and terminal distributions. We also show that the zero-noise limit of Schrödinger’s problem exists and the limit solves Monge’s problem with a

亲属 发表于 2025-3-24 09:53:26

http://reply.papertrans.cn/88/8781/878055/878055_16.png

傀儡 发表于 2025-3-24 11:52:49

Stochastic Optimal Transportation Problem,initial and terminal distributions. We also show that the zero-noise limit of Schrödinger’s problem exists and the limit solves Monge’s problem with a quadratic cost and that the zero-noise limit of the Duality Theorem for the SOT gives the Duality Theorem for the OT.

white-matter 发表于 2025-3-24 15:15:02

Introduction,t is also a generalization of Schrödinger’s problem and is related to Nelson’s stochastic mechanics. We briefly describe the OT and Schrödinger’s problems in such a way that one can compare the similarities between them.

赏钱 发表于 2025-3-24 23:03:11

http://reply.papertrans.cn/88/8781/878055/878055_19.png

CERE 发表于 2025-3-25 00:46:05

6楼
页: 1 [2] 3 4
查看完整版本: Titlebook: Stochastic Optimal Transportation; Stochastic Control w Toshio Mikami Book 2021 The Author(s), under exclusive license to Springer Nature S