Adentitious 发表于 2025-3-21 18:45:51
书目名称Stochastic Monotonicity and Queueing Applications of Birth-Death Processes影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0878036<br><br> <br><br>书目名称Stochastic Monotonicity and Queueing Applications of Birth-Death Processes影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0878036<br><br> <br><br>书目名称Stochastic Monotonicity and Queueing Applications of Birth-Death Processes网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0878036<br><br> <br><br>书目名称Stochastic Monotonicity and Queueing Applications of Birth-Death Processes网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0878036<br><br> <br><br>书目名称Stochastic Monotonicity and Queueing Applications of Birth-Death Processes被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0878036<br><br> <br><br>书目名称Stochastic Monotonicity and Queueing Applications of Birth-Death Processes被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0878036<br><br> <br><br>书目名称Stochastic Monotonicity and Queueing Applications of Birth-Death Processes年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0878036<br><br> <br><br>书目名称Stochastic Monotonicity and Queueing Applications of Birth-Death Processes年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0878036<br><br> <br><br>书目名称Stochastic Monotonicity and Queueing Applications of Birth-Death Processes读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0878036<br><br> <br><br>书目名称Stochastic Monotonicity and Queueing Applications of Birth-Death Processes读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0878036<br><br> <br><br>祖传财产 发表于 2025-3-21 23:53:14
A Queueing Model Where Potential Customers are Discouraged by Queue Length,We consider the birth-death process {X(t): 0 ≤ t < ∞} with parameters . which serves as a single server queueing model where potential customers are discouraged by queue length (cf. Conolly (1975), Hadidi (1975) and Natvig (1974, 1975)).HARP 发表于 2025-3-22 00:39:27
http://reply.papertrans.cn/88/8781/878036/878036_3.pngInfuriate 发表于 2025-3-22 07:15:47
The Mean of Birth-Death Processes,Consider a natural birth-death process {X(t): 0 ≤ t < ∞} with µ. = 0 and let m(t) denote the first moment of X(t), i.e.,话 发表于 2025-3-22 09:59:07
978-0-387-90547-1Springer-Verlag New York Inc. 1981heirloom 发表于 2025-3-22 13:05:26
http://reply.papertrans.cn/88/8781/878036/878036_6.pngBORE 发表于 2025-3-22 19:29:40
http://reply.papertrans.cn/88/8781/878036/878036_7.png断言 发表于 2025-3-22 22:51:04
http://reply.papertrans.cn/88/8781/878036/878036_8.pnglethal 发表于 2025-3-23 03:03:16
The Truncated Birth-Death Process, with transition probability functions . which satisfy the conditions . and for i ∈ S = {0, 1,..., N},. as t → 0, where λ. and µ., i ∈ S, are non-negative constants. Throughout this chapter we assume λ. > 0 for i ∈ S{N} and µ. > 0 for i ∈ S{0}.小歌剧 发表于 2025-3-23 05:45:38
http://reply.papertrans.cn/88/8781/878036/878036_10.png