母牛胆小鬼 发表于 2025-3-21 18:25:44

书目名称Stochastic Modelling and Filtering影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0878011<br><br>        <br><br>书目名称Stochastic Modelling and Filtering影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0878011<br><br>        <br><br>书目名称Stochastic Modelling and Filtering网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0878011<br><br>        <br><br>书目名称Stochastic Modelling and Filtering网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0878011<br><br>        <br><br>书目名称Stochastic Modelling and Filtering被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0878011<br><br>        <br><br>书目名称Stochastic Modelling and Filtering被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0878011<br><br>        <br><br>书目名称Stochastic Modelling and Filtering年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0878011<br><br>        <br><br>书目名称Stochastic Modelling and Filtering年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0878011<br><br>        <br><br>书目名称Stochastic Modelling and Filtering读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0878011<br><br>        <br><br>书目名称Stochastic Modelling and Filtering读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0878011<br><br>        <br><br>

女歌星 发表于 2025-3-21 20:47:23

http://reply.papertrans.cn/88/8781/878011/878011_2.png

Kinetic 发表于 2025-3-22 02:53:01

http://reply.papertrans.cn/88/8781/878011/878011_3.png

难取悦 发表于 2025-3-22 07:09:54

Estimation of immune response model parameters based on maximum likelihood method,cal point of view a disease is a process of an interaction between an antigen and cell populations of the immune system. Therefore concentrations of an antigen and immune system cells are state variables of the model..The interaction between cell populations in the model is described by nonlinear te

Bernstein-test 发表于 2025-3-22 11:39:33

http://reply.papertrans.cn/88/8781/878011/878011_5.png

Conquest 发表于 2025-3-22 16:15:46

Asymptotic study of estimation problems with small observation noise,ers which are solutions of stochastic differential equations driven by the observation process; upper bounds for the corresponding approximation errors are given. The proof is detailed in a particular case where the result can be improved; in particular, the efficiency of the extended Kalman filter

BUCK 发表于 2025-3-22 18:09:24

http://reply.papertrans.cn/88/8781/878011/878011_7.png

机密 发表于 2025-3-22 22:47:21

http://reply.papertrans.cn/88/8781/878011/878011_8.png

拱墙 发表于 2025-3-23 03:16:14

http://reply.papertrans.cn/88/8781/878011/878011_9.png

价值在贬值 发表于 2025-3-23 08:22:44

Galerkin approximation for optimal linear filtering of infinite dimensional linear systems,the state for each sample path of the noise. A basic tool is the study of the Riccati equation on the Hilbert space of Hilbert-Schmidt operators on the state space. Numerical results are given for a case concerning delay-differential equation.
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Stochastic Modelling and Filtering; Proceedings of the I Alfredo Germani Conference proceedings 1987 Springer-Verlag Berlin Heidelberg 1987