字里行间 发表于 2025-3-21 19:10:47
书目名称Stochastic Methods in Structural Dynamics影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0877998<br><br> <br><br>书目名称Stochastic Methods in Structural Dynamics影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0877998<br><br> <br><br>书目名称Stochastic Methods in Structural Dynamics网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0877998<br><br> <br><br>书目名称Stochastic Methods in Structural Dynamics网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0877998<br><br> <br><br>书目名称Stochastic Methods in Structural Dynamics被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0877998<br><br> <br><br>书目名称Stochastic Methods in Structural Dynamics被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0877998<br><br> <br><br>书目名称Stochastic Methods in Structural Dynamics年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0877998<br><br> <br><br>书目名称Stochastic Methods in Structural Dynamics年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0877998<br><br> <br><br>书目名称Stochastic Methods in Structural Dynamics读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0877998<br><br> <br><br>书目名称Stochastic Methods in Structural Dynamics读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0877998<br><br> <br><br>玛瑙 发表于 2025-3-21 20:45:34
http://reply.papertrans.cn/88/8780/877998/877998_2.pngMeager 发表于 2025-3-22 00:48:45
http://reply.papertrans.cn/88/8780/877998/877998_3.pngJOT 发表于 2025-3-22 05:50:45
978-94-010-8148-1Martinus Nijhoff Publishers, Dordrecht 1987BRUNT 发表于 2025-3-22 10:10:09
Stochastic Methods in Structural Dynamics978-94-009-3681-2Series ISSN 0169-667XN防腐剂 发表于 2025-3-22 16:33:07
Mechanics: Dynamical Systemshttp://image.papertrans.cn/s/image/877998.jpgBmd955 发表于 2025-3-22 18:54:10
https://doi.org/10.1007/978-94-009-3681-2dynamics; mechanics; reliability; simulation; structural dynamics; structural mechanics; vibration欢乐东方 发表于 2025-3-22 22:27:18
http://reply.papertrans.cn/88/8780/877998/877998_8.png不持续就爆 发表于 2025-3-23 05:10:48
Approximate Methods in Non-Linear Stochastic Dynamics,Let . be the equations of motion of a general multi-degree-of-freedom non-linear system. In Eq.(5.1) . is the generalized displacement vector; a superimposed dot means time derivation; .() is the total internal force in the i-th degree-of-freedom direction and .(t) and .(t) are two random excitation vectors with zero mean.adj忧郁的 发表于 2025-3-23 06:35:17
http://reply.papertrans.cn/88/8780/877998/877998_10.png