KIN 发表于 2025-3-25 03:43:33

http://reply.papertrans.cn/88/8780/877982/877982_21.png

杠杆 发表于 2025-3-25 08:15:50

Event-Based Optimization of Markov Systemst the two performance sensitivity formulas are the bases for learning and optimization of stochastic systems. The performance derivative formula leads to the gradient-based optimization approach, and the performance difference formula leads to the policy iteration approach to the standard MDP-type of problems.

jagged 发表于 2025-3-25 15:32:48

http://reply.papertrans.cn/88/8780/877982/877982_23.png

remission 发表于 2025-3-25 18:58:51

http://reply.papertrans.cn/88/8780/877982/877982_24.png

forbid 发表于 2025-3-25 20:50:42

http://reply.papertrans.cn/88/8780/877982/877982_25.png

Lignans 发表于 2025-3-26 02:08:23

Constructing Sensitivity FormulasAlthough the two sensitivity formulas for Markov chains can be derived easily from the Poisson equation, this mathematical derivation lacks structural insights needed for deriving similar sensitivity formulas for other non-standard problems.

诱使 发表于 2025-3-26 07:27:20

http://reply.papertrans.cn/88/8780/877982/877982_27.png

laxative 发表于 2025-3-26 10:43:43

Introductionternet and wireless networks), manufacturing, logistics, robotics, and bioinformatics. Most engineering systems are too complicated to be analyzed, or the parameters of the system models cannot be easily obtained. Therefore, learning techniques have to be applied.

LINES 发表于 2025-3-26 14:58:49

http://reply.papertrans.cn/88/8780/877982/877982_29.png

狗舍 发表于 2025-3-26 19:43:47

http://reply.papertrans.cn/88/8780/877982/877982_30.png
页: 1 2 [3] 4 5
查看完整版本: Titlebook: Stochastic Learning and Optimization; A Sensitivity-Based Xi-Ren Cao Book 2007 Springer-Verlag US 2007 Computer.Markov Chains.Markov decis