摘要 发表于 2025-3-28 15:25:11

The Doob–Meyer Decompositionus uniformly integrable supermartingale . is said to be of class (D) if the set of random variables . is uniformly integrable (where . is the set of all stopping times). These were introduced in Section .

synchronous 发表于 2025-3-28 18:46:07

Filtrations, Stopping Times and Stochastic Processesach of which is random. Our goal in this section is to build a mathematical understanding of these ‘stochastic processes’, that is, of collections of random variables, the values of which become revealed through time.

lanugo 发表于 2025-3-28 23:38:47

http://reply.papertrans.cn/88/8779/877867/877867_43.png

progestin 发表于 2025-3-29 06:44:59

http://reply.papertrans.cn/88/8779/877867/877867_44.png

反感 发表于 2025-3-29 09:03:47

The Doob–Meyer Decompositionundamentally useful property, and in this chapter we show that a similar decomposition holds for all right-continuous local supermartingales (and hence local submartingales). To obtain this, we first consider the particularly ‘nice’ class of processes given by class (D). Recall that a right-continuo

乳汁 发表于 2025-3-29 12:09:48

http://reply.papertrans.cn/88/8779/877867/877867_46.png

粗鲁的人 发表于 2025-3-29 17:43:13

http://reply.papertrans.cn/88/8779/877867/877867_47.png

压倒 发表于 2025-3-29 22:25:00

http://reply.papertrans.cn/88/8779/877867/877867_48.png

chlorosis 发表于 2025-3-30 01:28:06

http://reply.papertrans.cn/88/8779/877867/877867_49.png

Statins 发表于 2025-3-30 04:52:27

http://reply.papertrans.cn/88/8779/877867/877867_50.png
页: 1 2 3 4 [5] 6
查看完整版本: Titlebook: Stochastic Calculus and Applications; Samuel N. Cohen,Robert J. Elliott Textbook 2015Latest edition Springer Science+Business Media New Yo