Camouflage 发表于 2025-3-25 04:24:35

http://reply.papertrans.cn/88/8774/877329/877329_21.png

Hamper 发表于 2025-3-25 11:23:13

Step #2,Asymptotic estimates related to .(.). Many proofs that there are infinitely many primes. The Principle of Inclusion-Exclusion enters the picture.

anagen 发表于 2025-3-25 14:44:20

Step #3,The Euler product representation, logarithm, and reciprocal of .(.). The Jordan–Bonferroni inequalities. Upper and lower bounds for the divisor-counting function .(.).

Lineage 发表于 2025-3-25 16:36:22

http://reply.papertrans.cn/88/8774/877329/877329_24.png

Lethargic 发表于 2025-3-25 19:59:57

http://reply.papertrans.cn/88/8774/877329/877329_25.png

Foam-Cells 发表于 2025-3-26 01:35:50

http://reply.papertrans.cn/88/8774/877329/877329_26.png

排名真古怪 发表于 2025-3-26 07:08:26

http://reply.papertrans.cn/88/8774/877329/877329_27.png

爱社交 发表于 2025-3-26 11:08:30

http://reply.papertrans.cn/88/8774/877329/877329_28.png

inconceivable 发表于 2025-3-26 16:00:13

Step #9,The probability a random integer is squarefree. Brun’s upper bound on the count of twin primes and the convergence of ∑.1∕.. Existence of a nonsquare modulo . that is ., for all large ..

LAP 发表于 2025-3-26 16:48:33

Step #10,Mertens’ estimate for ∑.1∕.. How many prime factors an integer has, on average. A recursive formula for .(2.). First musings on primitive prime factors of 2. − 1.
页: 1 2 [3] 4 5 6 7
查看完整版本: Titlebook: Steps into Analytic Number Theory; A Problem-Based Intr Paul Pollack,Akash Singha Roy Textbook 2021 The Editor(s) (if applicable) and The A