万能 发表于 2025-3-21 19:09:22

书目名称Stable Klingen Vectors and Paramodular Newforms影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0875462<br><br>        <br><br>书目名称Stable Klingen Vectors and Paramodular Newforms影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0875462<br><br>        <br><br>书目名称Stable Klingen Vectors and Paramodular Newforms网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0875462<br><br>        <br><br>书目名称Stable Klingen Vectors and Paramodular Newforms网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0875462<br><br>        <br><br>书目名称Stable Klingen Vectors and Paramodular Newforms被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0875462<br><br>        <br><br>书目名称Stable Klingen Vectors and Paramodular Newforms被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0875462<br><br>        <br><br>书目名称Stable Klingen Vectors and Paramodular Newforms年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0875462<br><br>        <br><br>书目名称Stable Klingen Vectors and Paramodular Newforms年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0875462<br><br>        <br><br>书目名称Stable Klingen Vectors and Paramodular Newforms读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0875462<br><br>        <br><br>书目名称Stable Klingen Vectors and Paramodular Newforms读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0875462<br><br>        <br><br>

四牛在弯曲 发表于 2025-3-21 20:17:43

http://reply.papertrans.cn/88/8755/875462/875462_2.png

礼节 发表于 2025-3-22 02:57:23

http://reply.papertrans.cn/88/8755/875462/875462_3.png

fallible 发表于 2025-3-22 05:16:12

The Paramodular Subspaceand let . be a non-negative integer. Assume that . is paramodular. In this chapter we investigate the relationship between . and its subspace . of paramodular vectors. Except for a few non-generic ., the investigation of the relation between . and its subspace . is reduced to considering . that are

薄膜 发表于 2025-3-22 11:06:38

http://reply.papertrans.cn/88/8755/875462/875462_5.png

表皮 发表于 2025-3-22 13:45:11

http://reply.papertrans.cn/88/8755/875462/875462_6.png

口味 发表于 2025-3-22 20:06:03

Operators on Siegel Modular Formsned with respect to the stable Klingen congruence subgroups. We give a slash formula for each such operator; since this formula involves only upper block matrices, we are able to calculate the Fourier and Fourier-Jacobi expansions of the resulting Siegel modular forms.

大酒杯 发表于 2025-3-22 22:21:28

Hecke Eigenvalues and Fourier Coefficientss of Siegel modular newforms . in . of degree two with paramodular level .. Assuming that . is an eigenform for the Hecke operators . and . for all primes ., we begin by proving that the local results from the first part of this text imply identities involving . and its images under the upper block

Talkative 发表于 2025-3-23 02:42:37

http://reply.papertrans.cn/88/8755/875462/875462_9.png

alcoholism 发表于 2025-3-23 06:02:52

Hecke Eigenvalues and Minimal Levelsat the actions of these operators can be described in terms of the paramodular Hecke eigenvalues of .. We will also explain how these results can be used to compute these paramodular Hecke eigenvalues and determine whether . is non-generic. As outlined in the introduction of this work, this has useful applications to Siegel paramodular newforms.
页: [1] 2 3 4 5
查看完整版本: Titlebook: Stable Klingen Vectors and Paramodular Newforms; Jennifer Johnson-Leung,Brooks Roberts,Ralf Schmidt Book 2023 The Editor(s) (if applicable