摇曳的微光 发表于 2025-3-25 03:27:38

http://reply.papertrans.cn/88/8754/875368/875368_21.png

anachronistic 发表于 2025-3-25 10:00:44

Volterra Integral Dynamic Equations,dness and stability of the zero solution. Contents of this chapter are totally new and not published anywhere else except those of Sect. 6.3 that can be found in Adıvar and Raffoul (Appl Math Comput 273:258–266, 2016).

Lumbar-Spine 发表于 2025-3-25 13:27:16

http://reply.papertrans.cn/88/8754/875368/875368_23.png

逢迎春日 发表于 2025-3-25 18:07:11

on time scales.Presents detailed proofs of theorems.Allows uMotivated by recent increased activity of research on time scales, the book  provides a systematic approach to the study of the qualitative theory of boundedness, periodicity and stability of Volterra integro-dynamic equations on time scale

mettlesome 发表于 2025-3-25 21:23:50

http://reply.papertrans.cn/88/8754/875368/875368_25.png

诽谤 发表于 2025-3-26 00:59:06

http://reply.papertrans.cn/88/8754/875368/875368_26.png

climax 发表于 2025-3-26 07:49:36

http://reply.papertrans.cn/88/8754/875368/875368_27.png

misshapen 发表于 2025-3-26 09:10:25

http://reply.papertrans.cn/88/8754/875368/875368_28.png

instructive 发表于 2025-3-26 14:14:56

http://reply.papertrans.cn/88/8754/875368/875368_29.png

LAY 发表于 2025-3-26 18:18:02

http://reply.papertrans.cn/88/8754/875368/875368_30.png
页: 1 2 [3] 4 5
查看完整版本: Titlebook: Stability, Periodicity and Boundedness in Functional Dynamical Systems on Time Scales; Murat Adıvar,Youssef N. Raffoul Book 2020 Springer