DEBUT 发表于 2025-3-21 18:57:03

书目名称Stability of Finite and Infinite Dimensional Systems影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0875335<br><br>        <br><br>书目名称Stability of Finite and Infinite Dimensional Systems影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0875335<br><br>        <br><br>书目名称Stability of Finite and Infinite Dimensional Systems网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0875335<br><br>        <br><br>书目名称Stability of Finite and Infinite Dimensional Systems网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0875335<br><br>        <br><br>书目名称Stability of Finite and Infinite Dimensional Systems被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0875335<br><br>        <br><br>书目名称Stability of Finite and Infinite Dimensional Systems被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0875335<br><br>        <br><br>书目名称Stability of Finite and Infinite Dimensional Systems年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0875335<br><br>        <br><br>书目名称Stability of Finite and Infinite Dimensional Systems年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0875335<br><br>        <br><br>书目名称Stability of Finite and Infinite Dimensional Systems读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0875335<br><br>        <br><br>书目名称Stability of Finite and Infinite Dimensional Systems读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0875335<br><br>        <br><br>

FANG 发表于 2025-3-21 23:34:59

Essentially Nonlinear Finite Dimensional Systems,ms having the Lipschitz property. In Section 7.2 we consider nonlinear systems with differentiable right parts. In Section 7.3 we derive solution estimates which generalize the Lozinskii and Wazewski inequalities Nonlinear systems with linear majorants are discussed in Section 7.4. Section 7.5 is de

BYRE 发表于 2025-3-22 02:42:39

http://reply.papertrans.cn/88/8754/875335/875335_3.png

饮料 发表于 2025-3-22 06:29:57

Linear Time-Variant Systems with Delay,ction 9.2 is devoted to the stability of systems with bounded coefficients and separated autonomous parts. The freezing method for systems with delay is developed in Sections 9.3 and 9.4. Integrally small perturbations of nonautonomous systems are examined in Section 9.5. In Section 9.6 we establish

Lethargic 发表于 2025-3-22 10:14:26

http://reply.papertrans.cn/88/8754/875335/875335_5.png

汇总 发表于 2025-3-22 16:18:25

http://reply.papertrans.cn/88/8754/875335/875335_6.png

主动 发表于 2025-3-22 21:02:42

http://reply.papertrans.cn/88/8754/875335/875335_7.png

Myofibrils 发表于 2025-3-22 22:47:54

http://reply.papertrans.cn/88/8754/875335/875335_8.png

辫子带来帮助 发表于 2025-3-23 05:21:36

Linear Time-Variant Systems with Delay,is developed in Sections 9.3 and 9.4. Integrally small perturbations of nonautonomous systems are examined in Section 9.5. In Section 9.6 we establish the generalized Wazewski and Lozinskii inequalities. Linear time-variant retarded systems with small delays are investigated in Section 9.7.

西瓜 发表于 2025-3-23 07:53:14

http://reply.papertrans.cn/88/8754/875335/875335_10.png
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Stability of Finite and Infinite Dimensional Systems; Michael I. Gil’ Book 1998 Springer Science+Business Media New York 1998 control.cont