anagen 发表于 2025-3-25 04:45:10
Willi Freeden,Michael SchreinerA work of timeless significance in (geo-)mathematical research and teaching.A consistent and unified overviewon the theory of spherical functions of mathematical (geo-)sciences.An‘enlarged 2nd edition构想 发表于 2025-3-25 09:08:31
http://reply.papertrans.cn/88/8743/874237/874237_22.png一小块 发表于 2025-3-25 12:53:47
Scalar Spherical Harmonicslar spherical harmonics. Scalar spherical harmonics are essential for any analysis of spherical functions. The main features are the addition theorem, the Funk-Hecke formula, and the orthogonal invariance leading to expressions in the terms of Legendre polynomials. The scalar spherical harmonics alsMatrimony 发表于 2025-3-25 18:51:53
http://reply.papertrans.cn/88/8743/874237/874237_24.png革新 发表于 2025-3-25 23:05:56
http://reply.papertrans.cn/88/8743/874237/874237_25.png有帮助 发表于 2025-3-26 02:50:44
http://reply.papertrans.cn/88/8743/874237/874237_26.png多山 发表于 2025-3-26 07:12:56
http://reply.papertrans.cn/88/8743/874237/874237_27.png遗传学 发表于 2025-3-26 09:36:31
2510-1544 tions of mathematical (geo-)sciences.An‘enlarged 2nd edition.This book is an enlarged second edition of a monograph published in the Springer AGEM2-Series, 2009. It presents, in a consistent and unified overview, a setup of the theory of spherical functions of mathematical (geo-)sciences. The conten代理人 发表于 2025-3-26 15:32:37
Spin-Weighted Spherical Harmonicsas the spherical Navier-Stokes equations (see, e.g., M.J. Fengler, W. Freeden (2005)). A presentation of spherical harmonics of both quaternionically and fluid dynamically reflected systems is given in the monograph W. Freeden, M. Gutting (2013), where entry points to the literature are available, too.专横 发表于 2025-3-26 19:15:56
http://reply.papertrans.cn/88/8743/874237/874237_30.png