Hemiplegia
发表于 2025-3-26 21:38:42
Sphere Packings, Lattices and Groups978-1-4757-2249-9Series ISSN 0072-7830 Series E-ISSN 2196-9701
吗啡
发表于 2025-3-27 04:59:07
http://reply.papertrans.cn/88/8743/874231/874231_32.png
faddish
发表于 2025-3-27 08:08:10
http://reply.papertrans.cn/88/8743/874231/874231_33.png
Intractable
发表于 2025-3-27 13:08:11
http://reply.papertrans.cn/88/8743/874231/874231_34.png
dagger
发表于 2025-3-27 15:07:43
Bounds for Codes and Sphere Packings,ing problems in 2-point-homogeneous spaces. A simplified account is given of the general machinery developed by Kabatiansky and Levenshtein for setting up such problems as linear programs. Many other recent bounds are also described.
金桌活画面
发表于 2025-3-27 17:58:38
The Golay Codes and The Mathieu Groups,Miracle Octad Generator) and the hexacode are computational tools that make it easy to perform calculations with these objects. The . and the tetracode perform similar services for the ternary Golay code of length 12, the Steiner system . (5, 6, 12), and the Mathieu group ...
expeditious
发表于 2025-3-28 01:27:17
Uniqueness of Certain Spherical Codes,ther unit sphere Ω., and only one way of arranging 56 (resp. 4600) spheres in .. (resp. ..) so that they all touch two further, touching spheres. The following tight spherical .-designs are also unique: the 5-design in Ω., the 7-designs in Ω. and Ω. and the 11-design in Ω..
袋鼠
发表于 2025-3-28 02:45:04
Grundlehren der mathematischen Wissenschaftenhttp://image.papertrans.cn/s/image/874231.jpg
Brochure
发表于 2025-3-28 08:14:13
http://reply.papertrans.cn/88/8743/874231/874231_39.png
万灵丹
发表于 2025-3-28 10:53:43
http://reply.papertrans.cn/88/8743/874231/874231_40.png