dilate 发表于 2025-3-21 18:02:59

书目名称Sphere Packings影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0874229<br><br>        <br><br>书目名称Sphere Packings影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0874229<br><br>        <br><br>书目名称Sphere Packings网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0874229<br><br>        <br><br>书目名称Sphere Packings网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0874229<br><br>        <br><br>书目名称Sphere Packings被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0874229<br><br>        <br><br>书目名称Sphere Packings被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0874229<br><br>        <br><br>书目名称Sphere Packings年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0874229<br><br>        <br><br>书目名称Sphere Packings年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0874229<br><br>        <br><br>书目名称Sphere Packings读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0874229<br><br>        <br><br>书目名称Sphere Packings读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0874229<br><br>        <br><br>

ironic 发表于 2025-3-21 20:33:42

Lower Bounds for the Packing Densities of Spheres,ant and interesting. In 1905, by studying positive definite quadratic forms, Minkowski proved . where . is the Riemann zeta function, and made a general conjecture for bounded .. Forty years later his conjecture was proved by Hlawka . In this section we prove the Minkowski-Hlawka theorem for

Lipohypertrophy 发表于 2025-3-22 03:21:42

Sphere Packings Constructed from Codes,enience, we say that a codeword or point is of type [.∣.∣⋯] if . = ∣.∣ for . choices of ., . = ∣. for [itl} choices of ., etc. The . between two codewords . and . of . is the number of coordinates at which they differ, and is denoted by ‖., .‖.. The . of a codeword ., .(.), is the number of its nonz

Thyroid-Gland 发表于 2025-3-22 08:08:34

Upper Bounds for the Packing Densities and the Kissing Numbers of Spheres I,be a packing and let . be a number such that . > 1. Then, replace the spheres . + x, where x ∈ ., by . + x and fill each of these new spheres with a certain amount of mass, of variable density, such that the total mass at any point of . does not exceed 1. Hence, the total mass of the spheres . + x,

不知疲倦 发表于 2025-3-22 09:53:00

http://reply.papertrans.cn/88/8743/874229/874229_5.png

啤酒 发表于 2025-3-22 15:17:48

http://reply.papertrans.cn/88/8743/874229/874229_6.png

inspired 发表于 2025-3-22 19:06:42

http://reply.papertrans.cn/88/8743/874229/874229_7.png

GRAIN 发表于 2025-3-23 01:02:44

http://reply.papertrans.cn/88/8743/874229/874229_8.png

表示向前 发表于 2025-3-23 01:51:38

Finite Sphere Packings,be a unit vector in .. Then, we define ., it can be regarded as a local density of . + . in .,.. By routine computation it follows that . Based on this observation, in 1975 L. Fejes Tóth made the following conjecture about the volume case of the above problem.

Hamper 发表于 2025-3-23 07:00:40

http://reply.papertrans.cn/88/8743/874229/874229_10.png
页: [1] 2 3 4 5 6
查看完整版本: Titlebook: Sphere Packings; Chuanming Zong,John Talbot Textbook 1999 Springer Science+Business Media New York 1999 Kabatjanski-Levenstein method.Latt