Glutinous 发表于 2025-3-25 05:10:57
K. Winkler of intermittency..What we would like to convince you is that what we call weak or wave turbulence is every bit as rich as the macho turbulence of 3D hydrodynamics at high Reynolds numbers and, moreover, is analytically more tractable. It is an excellent paradigm for the study of many body HamiltoniCredence 发表于 2025-3-25 11:17:03
http://reply.papertrans.cn/88/8742/874152/874152_22.pngAmylase 发表于 2025-3-25 15:21:08
http://reply.papertrans.cn/88/8742/874152/874152_23.pngIntroduction 发表于 2025-3-25 19:29:15
http://reply.papertrans.cn/88/8742/874152/874152_24.pngABIDE 发表于 2025-3-25 22:17:05
W. Häuserlf-similar solutions. A self-similar solution is, roughly speaking, a solution invariant under a scaling transformationthat does not change the equation. For several typical equations we shall give mathematical proofs that certain self-similar solutions asymptotically approximate the typical behavioBARGE 发表于 2025-3-26 00:51:43
http://reply.papertrans.cn/88/8742/874152/874152_26.png放逐某人 发表于 2025-3-26 08:12:42
R. Schwab,U. T. Egle,M. Basslerlf-similar solutions. A self-similar solution is, roughly speaking, a solution invariant under a scaling transformationthat does not change the equation. For several typical equations we shall give mathematical proofs that certain self-similar solutions asymptotically approximate the typical behavioDecongestant 发表于 2025-3-26 12:26:11
M. Wirschinglf-similar solutions. A self-similar solution is, roughly speaking, a solution invariant under a scaling transformationthat does not change the equation. For several typical equations we shall give mathematical proofs that certain self-similar solutions asymptotically approximate the typical behavio地壳 发表于 2025-3-26 15:03:38
http://reply.papertrans.cn/88/8742/874152/874152_29.png我说不重要 发表于 2025-3-26 17:24:32
M. Cierpkalf-similar solutions. A self-similar solution is, roughly speaking, a solution invariant under a scaling transformationthat does not change the equation. For several typical equations we shall give mathematical proofs that certain self-similar solutions asymptotically approximate the typical behavio