神像之光环
发表于 2025-3-21 19:19:04
书目名称Spectral Theory on the S-Spectrum for Quaternionic Operators影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0873892<br><br> <br><br>书目名称Spectral Theory on the S-Spectrum for Quaternionic Operators影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0873892<br><br> <br><br>书目名称Spectral Theory on the S-Spectrum for Quaternionic Operators网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0873892<br><br> <br><br>书目名称Spectral Theory on the S-Spectrum for Quaternionic Operators网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0873892<br><br> <br><br>书目名称Spectral Theory on the S-Spectrum for Quaternionic Operators被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0873892<br><br> <br><br>书目名称Spectral Theory on the S-Spectrum for Quaternionic Operators被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0873892<br><br> <br><br>书目名称Spectral Theory on the S-Spectrum for Quaternionic Operators年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0873892<br><br> <br><br>书目名称Spectral Theory on the S-Spectrum for Quaternionic Operators年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0873892<br><br> <br><br>书目名称Spectral Theory on the S-Spectrum for Quaternionic Operators读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0873892<br><br> <br><br>书目名称Spectral Theory on the S-Spectrum for Quaternionic Operators读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0873892<br><br> <br><br>
提名的名单
发表于 2025-3-21 20:38:00
http://reply.papertrans.cn/88/8739/873892/873892_2.png
可卡
发表于 2025-3-22 00:39:35
http://reply.papertrans.cn/88/8739/873892/873892_3.png
enfeeble
发表于 2025-3-22 08:00:59
http://reply.papertrans.cn/88/8739/873892/873892_4.png
异常
发表于 2025-3-22 08:57:56
http://reply.papertrans.cn/88/8739/873892/873892_5.png
landfill
发表于 2025-3-22 15:43:32
http://reply.papertrans.cn/88/8739/873892/873892_6.png
orthodox
发表于 2025-3-22 17:14:38
http://reply.papertrans.cn/88/8739/873892/873892_7.png
流动性
发表于 2025-3-23 01:07:02
http://reply.papertrans.cn/88/8739/873892/873892_8.png
Amendment
发表于 2025-3-23 04:05:56
Spectral Theorem for Unitary Operators, in the complex case, the spectral theorem for unitary operators can be deduced from the quaternionic version of Herglotz’s theorem proved in . The spectral theorem for unitary operators based on Herglotz’s theorem was proved in .
CONE
发表于 2025-3-23 06:16:52
Book 2018contained treatment of this theory that has been developed in the last decade, the book features topics like the S-functional calculus, the F-functional calculus, the quaternionic spectral theorem, spectral integration and spectral operators in the quaternionic setting. These topics are based on the