Radiofrequency 发表于 2025-3-21 17:55:52

书目名称Spectral Methods for Incompressible Viscous Flow影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0873838<br><br>        <br><br>书目名称Spectral Methods for Incompressible Viscous Flow影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0873838<br><br>        <br><br>书目名称Spectral Methods for Incompressible Viscous Flow网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0873838<br><br>        <br><br>书目名称Spectral Methods for Incompressible Viscous Flow网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0873838<br><br>        <br><br>书目名称Spectral Methods for Incompressible Viscous Flow被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0873838<br><br>        <br><br>书目名称Spectral Methods for Incompressible Viscous Flow被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0873838<br><br>        <br><br>书目名称Spectral Methods for Incompressible Viscous Flow年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0873838<br><br>        <br><br>书目名称Spectral Methods for Incompressible Viscous Flow年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0873838<br><br>        <br><br>书目名称Spectral Methods for Incompressible Viscous Flow读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0873838<br><br>        <br><br>书目名称Spectral Methods for Incompressible Viscous Flow读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0873838<br><br>        <br><br>

G-spot 发表于 2025-3-21 22:14:00

http://reply.papertrans.cn/88/8739/873838/873838_2.png

forecast 发表于 2025-3-22 04:02:41

Introductiontion as a truncated series expansion, the unknowns being the expansion coefficients. The Fourier basis is appropriate for periodic problems. For nonperiodic problems, the Chebyshev or Legendre polynomial bases are commonly used, but other basis functions could be considered according to the problem

Panther 发表于 2025-3-22 05:41:29

Fundamentals of spectral methodson. By using the notion of residual, it will be shown how spectral approximation can be defined for the representation of a given function as well as for the solution of a differential problem. These questions will be addressed in detail in the following two chapters devoted, respectively, to Fourie

过去分词 发表于 2025-3-22 10:26:31

http://reply.papertrans.cn/88/8739/873838/873838_5.png

不能仁慈 发表于 2025-3-22 14:56:28

Chebyshev methodt the boundaries. In the case of nonperiodic problems, it is advisable to have recourse to better-suited basis functions. Orthogonal polynomials, like Chebyshev polynomials, constitute a proper alternative to the Fourier basis. The Chebyshev series expansion may be seen as a cosine Fourier series, s

Nefarious 发表于 2025-3-22 17:50:59

Time-dependent equationsons, their analysis is developed in the linear case and, more especially, for the advection-diffusion equation. First, we address the stability of the spectral approximation, namely, the existence of a bounded solution of the differential equations in time resulting from the spectral approximation.

上釉彩 发表于 2025-3-22 23:42:31

http://reply.papertrans.cn/88/8739/873838/873838_8.png

大炮 发表于 2025-3-23 03:02:43

Vorticity-Streamfunction Equationsnected domains. These advantages are well known: (1) the velocity field is automatically divergence-free, (2) the mathematical properties of the equations permit the construction of simple and robust solution methods, (3) computing time is saved because of the smaller number of equations. In the pre

BRIBE 发表于 2025-3-23 06:19:43

Velocity-Pressure Equationstion than the vorticity-streamfunction equations which are restricted to two-dimensional flows. First, the Fourier method for computing fully periodic flows is discussed. Then the major part of the chapter is devoted to the case of one or more nonperiodic directions. In such a situation, the classic
页: [1] 2 3 4 5
查看完整版本: Titlebook: Spectral Methods for Incompressible Viscous Flow; Roger Peyret Textbook 2002 Springer Science+Business Media New York 2002 Navier-Stokes e