遮阳伞 发表于 2025-3-21 19:00:27
书目名称Sozialräumliche Jugendarbeit影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0872783<br><br> <br><br>书目名称Sozialräumliche Jugendarbeit影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0872783<br><br> <br><br>书目名称Sozialräumliche Jugendarbeit网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0872783<br><br> <br><br>书目名称Sozialräumliche Jugendarbeit网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0872783<br><br> <br><br>书目名称Sozialräumliche Jugendarbeit被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0872783<br><br> <br><br>书目名称Sozialräumliche Jugendarbeit被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0872783<br><br> <br><br>书目名称Sozialräumliche Jugendarbeit年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0872783<br><br> <br><br>书目名称Sozialräumliche Jugendarbeit年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0872783<br><br> <br><br>书目名称Sozialräumliche Jugendarbeit读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0872783<br><br> <br><br>书目名称Sozialräumliche Jugendarbeit读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0872783<br><br> <br><br>隐藏 发表于 2025-3-22 00:00:24
http://reply.papertrans.cn/88/8728/872783/872783_2.pngAlveolar-Bone 发表于 2025-3-22 00:44:42
Albert Herrenknechthe implicit semantic level, BMI provides a novel attended attention mechanism over texts and labels for deep interaction to model bidirectional text explanation for labels and label guidance for texts. Furthermore, a gated residual mechanism is employed to obtain core information of labels to improv词汇 发表于 2025-3-22 04:57:06
http://reply.papertrans.cn/88/8728/872783/872783_4.png手段 发表于 2025-3-22 11:08:16
Christian Kühn propagation and sentence embedding is proposed in this work. It represents text as numerical features through sentence embedding, and then assigns pseudo-labels to unlabeled data through label propagation, thereby completing semi-supervised training. Experiments on public datasets for PPI extractio设想 发表于 2025-3-22 12:55:12
http://reply.papertrans.cn/88/8728/872783/872783_6.png噱头 发表于 2025-3-22 20:33:44
Richard Krisch and LLM solver to improve their performance. For the tree-based solver, we propose an ensemble learning framework based on ten-fold cross-validation and voting mechanism. In the LLM solver, we adopt self-consistency (SC) method to improve answer selection. Experimental results demonstrate the effecNUDGE 发表于 2025-3-22 21:12:45
Ulrich Deinettail about how consistent solutions training affects the work process of beam search. In addition, we found significant differences between models trained using consistent solutions and those trained without consistent solutions, so the model ensemble technique is applied to improve model performancEndoscope 发表于 2025-3-23 04:46:50
Christoph Gillese of LLM is poor in experiments, they possess excellent logical abilities. With the training set becoming more diverse and the methods for training set data augmentation becoming more refined, the supervised fine-tuning (SFT) mode trained LLMs are expected to achieve significant improvements in CGECouter-ear 发表于 2025-3-23 07:29:01
http://reply.papertrans.cn/88/8728/872783/872783_10.png