Consonant 发表于 2025-3-21 19:49:49
书目名称Solitons影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0871681<br><br> <br><br>书目名称Solitons影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0871681<br><br> <br><br>书目名称Solitons网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0871681<br><br> <br><br>书目名称Solitons网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0871681<br><br> <br><br>书目名称Solitons被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0871681<br><br> <br><br>书目名称Solitons被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0871681<br><br> <br><br>书目名称Solitons年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0871681<br><br> <br><br>书目名称Solitons年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0871681<br><br> <br><br>书目名称Solitons读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0871681<br><br> <br><br>书目名称Solitons读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0871681<br><br> <br><br>Confidential 发表于 2025-3-22 00:01:01
http://reply.papertrans.cn/88/8717/871681/871681_2.pngpropose 发表于 2025-3-22 03:40:06
http://reply.papertrans.cn/88/8717/871681/871681_3.pngMAPLE 发表于 2025-3-22 08:10:29
Gauge Unification of Integrable Nonlinear SystemsGauge equivalence of generalized NLS type equations is established with its possible application to find out soliton solutions and with the generation of new integrable systems. Through certain gauge choices some realistic models are exactly solved. Explicit auto BT for different classes of equations are also obtained by gauge transformation.使虚弱 发表于 2025-3-22 09:57:46
http://reply.papertrans.cn/88/8717/871681/871681_5.pngparallelism 发表于 2025-3-22 15:42:43
Bäcklund Transformations and Soliton Wave FunctionsUsing Darboux-Bargmann technique, we obtain (1) the Backlund transformations for any nonlinear evolution equation (NLEE) solvable by the inverse scattering method of Zakharov-Shabat—Ablowitz-Kaup-Newell-Segur (ZS/AKNS) and (2) the ZS/AKNS wave functions corresponding to the n-soliton solution of this NLEE.emission 发表于 2025-3-22 19:39:55
http://reply.papertrans.cn/88/8717/871681/871681_7.png放逐 发表于 2025-3-22 22:39:46
http://reply.papertrans.cn/88/8717/871681/871681_8.png浪费时间 发表于 2025-3-23 04:54:25
http://reply.papertrans.cn/88/8717/871681/871681_9.pngNEXUS 发表于 2025-3-23 09:19:23
Integrable Equations in Multi-Dimensions (2+1) are Bi-Hamiltonian Systemsions in (2+1)-dimensions is reviewed. The general theory associated with factorizable recursion operators in multidimensions is discussed. Both gradient and non-gradient master-symmetries are simply derived and their general theory is developed, using the Kadomtsev-Petviashvili equation as an example.