obesity
发表于 2025-3-21 16:32:51
书目名称Simplicial Homotopy Theory影响因子(影响力)<br> http://impactfactor.cn/2024/if/?ISSN=BK0867450<br><br> <br><br>书目名称Simplicial Homotopy Theory影响因子(影响力)学科排名<br> http://impactfactor.cn/2024/ifr/?ISSN=BK0867450<br><br> <br><br>书目名称Simplicial Homotopy Theory网络公开度<br> http://impactfactor.cn/2024/at/?ISSN=BK0867450<br><br> <br><br>书目名称Simplicial Homotopy Theory网络公开度学科排名<br> http://impactfactor.cn/2024/atr/?ISSN=BK0867450<br><br> <br><br>书目名称Simplicial Homotopy Theory被引频次<br> http://impactfactor.cn/2024/tc/?ISSN=BK0867450<br><br> <br><br>书目名称Simplicial Homotopy Theory被引频次学科排名<br> http://impactfactor.cn/2024/tcr/?ISSN=BK0867450<br><br> <br><br>书目名称Simplicial Homotopy Theory年度引用<br> http://impactfactor.cn/2024/ii/?ISSN=BK0867450<br><br> <br><br>书目名称Simplicial Homotopy Theory年度引用学科排名<br> http://impactfactor.cn/2024/iir/?ISSN=BK0867450<br><br> <br><br>书目名称Simplicial Homotopy Theory读者反馈<br> http://impactfactor.cn/2024/5y/?ISSN=BK0867450<br><br> <br><br>书目名称Simplicial Homotopy Theory读者反馈学科排名<br> http://impactfactor.cn/2024/5yr/?ISSN=BK0867450<br><br> <br><br>
不适
发表于 2025-3-21 22:46:17
Bisimplicial sets,This chapter is a basic exposition of the homotopy theory of bisimplicial sets and bisimplicial abelian groups.
长矛
发表于 2025-3-22 04:24:52
Simplicial groups,This is a somewhat complex chapter on the homotopy theory of simplicial groups and groupoids, divided into seven sections. Many ideas are involved. Here is a thumbnail outline:
hair-bulb
发表于 2025-3-22 06:15:11
http://reply.papertrans.cn/87/8675/867450/867450_4.png
Microaneurysm
发表于 2025-3-22 09:23:09
Paul G. Goerss,John F. JardineIncludes supplementary material:
NOVA
发表于 2025-3-22 14:46:35
978-3-0348-9737-2Springer Basel AG 1999
GROWL
发表于 2025-3-22 17:43:08
http://reply.papertrans.cn/87/8675/867450/867450_7.png
magnate
发表于 2025-3-22 21:27:50
0743-1643 Overview: Includes supplementary material: 978-3-0348-9737-2978-3-0348-8707-6Series ISSN 0743-1643 Series E-ISSN 2296-505X
LEVY
发表于 2025-3-23 04:54:13
Model Categories,omotopy category is defined to be the result of formally inverting the weak equivalences within the ambient closed model category, but can be constructed in the CW-complex style by taking homotopy classes of maps between objects which are fibrant and cofibrant. These topics are presented in the first section of this chapter.
Dorsal-Kyphosis
发表于 2025-3-23 08:55:28
Progress in Mathematicshttp://image.papertrans.cn/s/image/867450.jpg