缓和 发表于 2025-3-28 17:13:08
http://reply.papertrans.cn/87/8675/867413/867413_41.pngNeedlework 发表于 2025-3-28 21:09:30
http://reply.papertrans.cn/87/8675/867413/867413_42.png外貌 发表于 2025-3-29 02:45:10
http://reply.papertrans.cn/87/8675/867413/867413_43.pngDebility 发表于 2025-3-29 05:11:05
http://reply.papertrans.cn/87/8675/867413/867413_44.png断断续续 发表于 2025-3-29 07:49:14
Non-Euclidean Dissimilarities: Causes, Embedding and Informativenesson schemes based on template matching which lead to the design of non-Euclidean dissimilarity measures. A vector space derived from the embedding of the dissimilarities is desirable in order to use general classifiers. An isometric embedding of the symmetric non-Euclidean dissimilarities results in植物学 发表于 2025-3-29 13:15:30
http://reply.papertrans.cn/87/8675/867413/867413_46.png垄断 发表于 2025-3-29 17:23:15
http://reply.papertrans.cn/87/8675/867413/867413_47.pngHACK 发表于 2025-3-29 23:02:08
http://reply.papertrans.cn/87/8675/867413/867413_48.png导师 发表于 2025-3-30 00:09:58
Geometricity and Embeddingdding. Under the first heading, we explore how spherical embedding can be used to embed data onto the surface of sphere of optimal radius. Here we explore both elliptic and hyperbolic geometries, i.e., positive and negative curvatures. Our results on synthetic and real data show that the elliptic em