metabolism 发表于 2025-3-21 19:55:36
书目名称Sheaves in Geometry and Logic影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0866528<br><br> <br><br>书目名称Sheaves in Geometry and Logic影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0866528<br><br> <br><br>书目名称Sheaves in Geometry and Logic网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0866528<br><br> <br><br>书目名称Sheaves in Geometry and Logic网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0866528<br><br> <br><br>书目名称Sheaves in Geometry and Logic被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0866528<br><br> <br><br>书目名称Sheaves in Geometry and Logic被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0866528<br><br> <br><br>书目名称Sheaves in Geometry and Logic年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0866528<br><br> <br><br>书目名称Sheaves in Geometry and Logic年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0866528<br><br> <br><br>书目名称Sheaves in Geometry and Logic读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0866528<br><br> <br><br>书目名称Sheaves in Geometry and Logic读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0866528<br><br> <br><br>逃避现实 发表于 2025-3-21 21:39:46
http://reply.papertrans.cn/87/8666/866528/866528_2.png增强 发表于 2025-3-22 01:34:59
978-0-387-97710-2Springer-Verlag New York, Inc. 1994Ancillary 发表于 2025-3-22 05:44:13
http://reply.papertrans.cn/87/8666/866528/866528_4.pngExpertise 发表于 2025-3-22 10:20:17
http://reply.papertrans.cn/87/8666/866528/866528_5.pngCRUE 发表于 2025-3-22 13:48:17
http://reply.papertrans.cn/87/8666/866528/866528_6.pngstrdulate 发表于 2025-3-22 17:42:36
http://reply.papertrans.cn/87/8666/866528/866528_7.pngCpap155 发表于 2025-3-22 23:53:39
https://doi.org/10.1007/978-1-4612-0927-0Algebraic structure; Boolean algebra; Division; Heyting algebra; forcing; set; set theoryglowing 发表于 2025-3-23 02:04:58
Textbook 1994en the first draft of our book had been completed, we heard the sad news of his untimely death. This has cast a shadow on our subsequent work. Our views of topos theory, as presented here, have been shaped by continued study, by conferences, and by many personal contacts with friends and colleagues-注视 发表于 2025-3-23 07:33:29
Geometric Morphisms, factorization theorem, parallel to the familiar factorization of a function as a surjection followed by an injection. Moreover, we prove that the embeddings .→. of topoi correspond to Lawvere-Tierney topologies in the codomain ., while surjections . correspond to left exact comonads on the domain...