AWE 发表于 2025-3-25 03:59:28
http://reply.papertrans.cn/87/8661/866071/866071_21.pngdemote 发表于 2025-3-25 11:26:20
http://reply.papertrans.cn/87/8661/866071/866071_22.png琐事 发表于 2025-3-25 12:28:31
http://reply.papertrans.cn/87/8661/866071/866071_23.pngflutter 发表于 2025-3-25 17:30:15
http://reply.papertrans.cn/87/8661/866071/866071_24.pngpreservative 发表于 2025-3-25 22:52:48
http://reply.papertrans.cn/87/8661/866071/866071_25.pngMonocle 发表于 2025-3-26 02:54:01
http://reply.papertrans.cn/87/8661/866071/866071_26.png助记 发表于 2025-3-26 07:13:20
http://reply.papertrans.cn/87/8661/866071/866071_27.pnginnate 发表于 2025-3-26 10:02:43
http://reply.papertrans.cn/87/8661/866071/866071_28.pngGraduated 发表于 2025-3-26 12:39:03
http://reply.papertrans.cn/87/8661/866071/866071_29.png乐章 发表于 2025-3-26 19:51:25
Few-Shot Forecasting of Time-Series with Heterogeneous Channels Leveraging learning experience with similar datasets is a well-established technique for classification problems called few-shot classification. However, existing approaches cannot be applied to time-series forecasting because i) multivariate time-series datasets have different channels, and ii) fo