稀少 发表于 2025-3-21 17:11:19
书目名称Several Complex Variables VII影响因子(影响力)<br> http://impactfactor.cn/if/?ISSN=BK0865851<br><br> <br><br>书目名称Several Complex Variables VII影响因子(影响力)学科排名<br> http://impactfactor.cn/ifr/?ISSN=BK0865851<br><br> <br><br>书目名称Several Complex Variables VII网络公开度<br> http://impactfactor.cn/at/?ISSN=BK0865851<br><br> <br><br>书目名称Several Complex Variables VII网络公开度学科排名<br> http://impactfactor.cn/atr/?ISSN=BK0865851<br><br> <br><br>书目名称Several Complex Variables VII被引频次<br> http://impactfactor.cn/tc/?ISSN=BK0865851<br><br> <br><br>书目名称Several Complex Variables VII被引频次学科排名<br> http://impactfactor.cn/tcr/?ISSN=BK0865851<br><br> <br><br>书目名称Several Complex Variables VII年度引用<br> http://impactfactor.cn/ii/?ISSN=BK0865851<br><br> <br><br>书目名称Several Complex Variables VII年度引用学科排名<br> http://impactfactor.cn/iir/?ISSN=BK0865851<br><br> <br><br>书目名称Several Complex Variables VII读者反馈<br> http://impactfactor.cn/5y/?ISSN=BK0865851<br><br> <br><br>书目名称Several Complex Variables VII读者反馈学科排名<br> http://impactfactor.cn/5yr/?ISSN=BK0865851<br><br> <br><br>Yourself 发表于 2025-3-21 21:02:54
http://reply.papertrans.cn/87/8659/865851/865851_2.pnganeurysm 发表于 2025-3-22 03:55:16
http://reply.papertrans.cn/87/8659/865851/865851_3.png愤怒事实 发表于 2025-3-22 05:02:36
Pseudoconvexity, the Levi Problem and Vanishing Theorems, not arbitrary but satisfies a certain condition of pseudoconvexity. The question whether conversely such a pseudoconvex domain is a domain of holomorphy became famous as the so-called “Levi problem” and influenced the development of complex analysis over several decades. The Levi problem was first松鸡 发表于 2025-3-22 11:07:22
Theory of ,-Convexity and ,-Concavity,domains in the complex number space ℂ.. Section 2 carries over the results to complex spaces and to arbitrary coherent analytic sheaves, proves extension theorems and introduces the Fréchet topology in the set of local cross sections. In § 3 the finiteness of the dimension of cohomology vector space相容 发表于 2025-3-22 15:11:31
Modifications,romorphic equivalence. Roughly speaking, two complex spaces .,. are bimeromorphically equivalent if they are isomorphic outside thin analytic sets. If . and . are irreducible, this means that their fields of meromorphic functions are isomorphic. For two given spaces . and . which are bimeromorphicalCREST 发表于 2025-3-22 19:59:44
http://reply.papertrans.cn/87/8659/865851/865851_7.pngelastic 发表于 2025-3-23 00:31:27
http://reply.papertrans.cn/87/8659/865851/865851_8.png收集 发表于 2025-3-23 04:14:33
Introduction,e very beginning, to studies in . complex variables. Complex tori and moduli spaces are complex manifolds, i.e. Hausdorff spaces with local complex coordinates z.,..., z.; holomorphic functions are, locally, those functions which are holomorphic in these coordinates.GLUT 发表于 2025-3-23 06:19:08
Theory of ,-Convexity and ,-Concavity,ion theorems and introduces the Fréchet topology in the set of local cross sections. In § 3 the finiteness of the dimension of cohomology vector spaces is proved in certain cases. Section 4 gives some applications: When can a hole in a complex space be filled. When do hulls for cohomology classes exist and when does the cohomology vanish?