ACE313 发表于 2025-3-21 20:09:13
书目名称Sequences and Series in Banach Spaces影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0865376<br><br> <br><br>书目名称Sequences and Series in Banach Spaces影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0865376<br><br> <br><br>书目名称Sequences and Series in Banach Spaces网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0865376<br><br> <br><br>书目名称Sequences and Series in Banach Spaces网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0865376<br><br> <br><br>书目名称Sequences and Series in Banach Spaces被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0865376<br><br> <br><br>书目名称Sequences and Series in Banach Spaces被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0865376<br><br> <br><br>书目名称Sequences and Series in Banach Spaces年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0865376<br><br> <br><br>书目名称Sequences and Series in Banach Spaces年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0865376<br><br> <br><br>书目名称Sequences and Series in Banach Spaces读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0865376<br><br> <br><br>书目名称Sequences and Series in Banach Spaces读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0865376<br><br> <br><br>漂泊 发表于 2025-3-21 21:45:35
https://doi.org/10.1007/978-1-4612-5200-9Banach; Banach Space; Banachscher Raum; Convexity; Sequences; Series; Spaces; choquet integral; compactness;GROUP 发表于 2025-3-22 00:48:37
978-1-4612-9734-5Springer-Verlag New York, Inc. 1984死亡率 发表于 2025-3-22 08:02:35
http://reply.papertrans.cn/87/8654/865376/865376_4.png前兆 发表于 2025-3-22 09:47:28
,The Eberlein-Šmulian Theorem,f a Banach space . get to be weakly compact? The two are related. Before investigating their relationship, we look at a couple of necessary ingredients for weak compactness and take a close look at two illustrative nonweakly compact sets.断断续续 发表于 2025-3-22 15:59:44
The Classical Banach Spaces, of the results treated thus far were first derived in special cases, then understood to hold more generally. Not too surprisingly, along the path to general results many important theorems, special in their domain of applicability, were encountered. In this chapter, we present more than a few such results.musicologist 发表于 2025-3-22 18:53:58
http://reply.papertrans.cn/87/8654/865376/865376_7.png加强防卫 发表于 2025-3-23 00:36:43
,An Intermission: Ramsey’s Theorem,whenever . < . holds for each . ∈ . and . ∈ .. The collection of finite subsets of . is denoted by ..(.) and the collection of infinite subsets of . by ..(.). More generally for . ⊆ . we denote by ..(. the colelction { . ∈ .. (.) : . ⊆ .. ∪ ., . < . . } and by .. (.) the collection { . ∈ .. (.): . ⊆ . ⊆ . ∪ ., . < . . }.美学 发表于 2025-3-23 02:31:32
The Josefson-Nissenzweig Theorem,y in .* differ. Can they have the same convergent sequences? The answer is a resounding “no!” and it is the object of the present discussion. More precisely we will prove the following theorem independently discovered by B. Josef son and A. Nissenzweig.加花粗鄙人 发表于 2025-3-23 06:23:54
http://reply.papertrans.cn/87/8654/865376/865376_10.png