Washington 发表于 2025-3-21 16:09:22
书目名称Sensitivity Analysis for Neural Networks影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0865107<br><br> <br><br>书目名称Sensitivity Analysis for Neural Networks影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0865107<br><br> <br><br>书目名称Sensitivity Analysis for Neural Networks网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0865107<br><br> <br><br>书目名称Sensitivity Analysis for Neural Networks网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0865107<br><br> <br><br>书目名称Sensitivity Analysis for Neural Networks被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0865107<br><br> <br><br>书目名称Sensitivity Analysis for Neural Networks被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0865107<br><br> <br><br>书目名称Sensitivity Analysis for Neural Networks年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0865107<br><br> <br><br>书目名称Sensitivity Analysis for Neural Networks年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0865107<br><br> <br><br>书目名称Sensitivity Analysis for Neural Networks读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0865107<br><br> <br><br>书目名称Sensitivity Analysis for Neural Networks读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0865107<br><br> <br><br>–FER 发表于 2025-3-22 00:06:57
http://reply.papertrans.cn/87/8652/865107/865107_2.png口味 发表于 2025-3-22 02:10:35
http://reply.papertrans.cn/87/8652/865107/865107_3.png打折 发表于 2025-3-22 06:05:39
Sensitivity Analysis of Prior Knowledge1,nd encode the knowledge in such a way that it is not destroyed by further training, but can be revised. In addition, one would like the possibility to improve the classification by discovering new rules if needed.Expressly 发表于 2025-3-22 09:55:54
http://reply.papertrans.cn/87/8652/865107/865107_5.pngjovial 发表于 2025-3-22 15:47:53
http://reply.papertrans.cn/87/8652/865107/865107_6.pnginsurrection 发表于 2025-3-22 20:00:31
http://reply.papertrans.cn/87/8652/865107/865107_7.pngcustody 发表于 2025-3-23 01:00:23
http://reply.papertrans.cn/87/8652/865107/865107_8.png强行引入 发表于 2025-3-23 01:40:57
http://reply.papertrans.cn/87/8652/865107/865107_9.pngKinetic 发表于 2025-3-23 06:22:01
Hyper-Rectangle Model,an MLP’s input space. The hyper-rectangle approach does not demand that the input deviation be very small as the derivative approach requires, and the mathematical expectation used in the hyper-rectangle model reflects the network’s output deviation more directly and exactly than the variance does.