他很灵活 发表于 2025-3-27 00:28:32
Building New Semirings from Old,notation” for such matrices. We have already noted that addition of such matrices, defined componentwise, turns ... into a commutative additive monoid, the identity element of which is the function which takes every element of . × . to 0.NORM 发表于 2025-3-27 02:23:28
http://reply.papertrans.cn/87/8651/865016/865016_32.png狂怒 发表于 2025-3-27 08:20:11
Additively-Regular Semirings,ent ... satisfies both of the above conditions. If a ∈ ... then . is additively regular with .... If . is a congruence relation on . and . is an additively-regular element of . then surely . is an additively-regular element of ..心神不宁 发表于 2025-3-27 13:06:14
Semimodules over Semirings,etting. Moreover, many important constructions in pure and applied mathematics can, as we shall see, be understood as semimodules over appropriate semirings. In this chapter we lay the foundations for the study of semimodules.窝转脊椎动物 发表于 2025-3-27 16:40:28
http://reply.papertrans.cn/87/8651/865016/865016_35.png说笑 发表于 2025-3-27 17:52:53
http://reply.papertrans.cn/87/8651/865016/865016_36.png连接 发表于 2025-3-28 00:40:14
http://reply.papertrans.cn/87/8651/865016/865016_37.pngFLORA 发表于 2025-3-28 04:51:50
http://reply.papertrans.cn/87/8651/865016/865016_38.pngINCUR 发表于 2025-3-28 06:23:35
http://reply.papertrans.cn/87/8651/865016/865016_39.png弓箭 发表于 2025-3-28 13:35:09
http://reply.papertrans.cn/87/8651/865016/865016_40.png