Perforation 发表于 2025-3-21 18:12:09

书目名称Semidynamical Systems in Infinite Dimensional Spaces影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0864917<br><br>        <br><br>书目名称Semidynamical Systems in Infinite Dimensional Spaces影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0864917<br><br>        <br><br>书目名称Semidynamical Systems in Infinite Dimensional Spaces网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0864917<br><br>        <br><br>书目名称Semidynamical Systems in Infinite Dimensional Spaces网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0864917<br><br>        <br><br>书目名称Semidynamical Systems in Infinite Dimensional Spaces被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0864917<br><br>        <br><br>书目名称Semidynamical Systems in Infinite Dimensional Spaces被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0864917<br><br>        <br><br>书目名称Semidynamical Systems in Infinite Dimensional Spaces年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0864917<br><br>        <br><br>书目名称Semidynamical Systems in Infinite Dimensional Spaces年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0864917<br><br>        <br><br>书目名称Semidynamical Systems in Infinite Dimensional Spaces读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0864917<br><br>        <br><br>书目名称Semidynamical Systems in Infinite Dimensional Spaces读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0864917<br><br>        <br><br>

Rinne-Test 发表于 2025-3-21 23:31:45

http://reply.papertrans.cn/87/8650/864917/864917_2.png

云状 发表于 2025-3-22 01:20:35

Nonautonomous Ordinary Differential Equations,. provided f: W → IR. is continuous on the open subset W ⊂ IR. and the solutions of Equation (1.1) through any point (x.,t.) ∈ W × IR are uniquely defined and remain in W for all time. In fact, if Φ(x.;t) denotes the solution of Equation (1.1) through (x.,0) evaluated at time t ∈ IR., it can be veri

thrombus 发表于 2025-3-22 06:22:22

http://reply.papertrans.cn/87/8650/864917/864917_4.png

Defraud 发表于 2025-3-22 11:11:06

Functional Differential Equations, the solution. Numerous physical, economic, biological, and social systems, though, exhibit hereditary dependence. That is, the future state of the system depends not only upon the present state, but also upon past states. Models of such systems must take into account this hereditary effect. We illu

不可磨灭 发表于 2025-3-22 16:24:57

Weak Semidynamical Systems and Processes,ontinuity axiom (Definition 2.1(iii) of Chapter I); namely, assume that π(x,t) is only continuous in x ∈ X. In particular, we still obtain weak in-variance of compact positive limit sets. In addition, if the continuity in x is uniform with respect to t ∈ IR., then (X,π) extends to a weak dynamical s

大炮 发表于 2025-3-22 20:43:08

Weak Semidynamical Systems and Processes,ystem on the positive limit sets. Moreover, the positive limit sets will then be minimal with respect to this flow. Finally, we will still be able to show, as in Chapter III, that the positive limit sets are equi-almost periodic.

FLAGR 发表于 2025-3-22 22:45:33

Semidynamical Systems in Banach Space,u = 0 in terms of the operator A. The classical approach was to establish the existence, uniqueness, and continuous dependence of the solutions of the particular partial differential equation, for example, and then demonstrate that the solutions generate a semigroup. This was essentially the approach we also took in Chapter IV.

疼死我了 发表于 2025-3-23 05:06:32

0066-5452 ential equations. The purpose of this book is to answer these questions for certain classes of equa­ tions by recourse to the framework of semidynamical systems (or topological dynamics as it is sometimes called). This approach makes it possible to treat a seemingly broad range of equations from non

Processes 发表于 2025-3-23 05:43:44

http://reply.papertrans.cn/87/8650/864917/864917_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: Semidynamical Systems in Infinite Dimensional Spaces; Stephen H. Saperstone Book 1981 Springer-Verlag New York Inc. 1981 Hilbert space.Sob