钻孔
发表于 2025-3-25 04:31:41
The Type of a Self-Dual Code,Sloane and Solé , , that certain notorious . binary codes (the Nordstrom-Robinson, Kerdock and Preparata codes) could best be understood as arising from . codes over the ring Z/4Z, and, in the case of the Kerdock code, from a self-dual linear code over Z/4Z.
减震
发表于 2025-3-25 08:27:13
http://reply.papertrans.cn/87/8645/864439/864439_22.png
天赋
发表于 2025-3-25 15:38:46
http://reply.papertrans.cn/87/8645/864439/864439_23.png
Conquest
发表于 2025-3-25 17:18:51
Quantum Codes,ecisely, for codes of Type 4., but as we will see, the two are extremely closely related). There is also a direct connection: the natural group of equivalences acting on a symplectic quantum code is exactly the complex Clifford group . = .(.(2II)) (cf. Theorem 6.2.1).
Freeze
发表于 2025-3-25 21:19:35
The Type of a Self-Dual Code,.man and Brualdi , Rains and Sloane ) a linear error-correcting code . is a subspace of a vector space . over a finite field F, with inner products of codewords taking values in F itself. The classical theory was enlarged in the early 1990’s by the discovery by Hammons, Kumar, Calderbank,
百灵鸟
发表于 2025-3-26 01:51:12
http://reply.papertrans.cn/87/8645/864439/864439_26.png
PAC
发表于 2025-3-26 06:10:52
http://reply.papertrans.cn/87/8645/864439/864439_27.png
独行者
发表于 2025-3-26 11:55:31
http://reply.papertrans.cn/87/8645/864439/864439_28.png
别名
发表于 2025-3-26 13:06:50
http://reply.papertrans.cn/87/8645/864439/864439_29.png
乐意
发表于 2025-3-26 20:30:42
http://reply.papertrans.cn/87/8645/864439/864439_30.png