HEIR 发表于 2025-3-21 19:41:46

书目名称Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians影响因子(影响力)<br>        http://impactfactor.cn/if/?ISSN=BK0864401<br><br>        <br><br>书目名称Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians影响因子(影响力)学科排名<br>        http://impactfactor.cn/ifr/?ISSN=BK0864401<br><br>        <br><br>书目名称Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians网络公开度<br>        http://impactfactor.cn/at/?ISSN=BK0864401<br><br>        <br><br>书目名称Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians网络公开度学科排名<br>        http://impactfactor.cn/atr/?ISSN=BK0864401<br><br>        <br><br>书目名称Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians被引频次<br>        http://impactfactor.cn/tc/?ISSN=BK0864401<br><br>        <br><br>书目名称Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians被引频次学科排名<br>        http://impactfactor.cn/tcr/?ISSN=BK0864401<br><br>        <br><br>书目名称Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians年度引用<br>        http://impactfactor.cn/ii/?ISSN=BK0864401<br><br>        <br><br>书目名称Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians年度引用学科排名<br>        http://impactfactor.cn/iir/?ISSN=BK0864401<br><br>        <br><br>书目名称Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians读者反馈<br>        http://impactfactor.cn/5y/?ISSN=BK0864401<br><br>        <br><br>书目名称Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians读者反馈学科排名<br>        http://impactfactor.cn/5yr/?ISSN=BK0864401<br><br>        <br><br>

Antagonist 发表于 2025-3-21 20:55:55

http://reply.papertrans.cn/87/8645/864401/864401_2.png

Felicitous 发表于 2025-3-22 03:51:01

Quantum Particle on Grushin Structuresssential self-adjointness or lack thereof, whence also a natural problem of identification, classification, and analysis of self-adjoint extensions, for the minimally defined Laplace-Beltrami operator on manifold. Such questions are discussed in this Chapter for the planar, and, more extensively, th

exceptional 发表于 2025-3-22 08:02:53

http://reply.papertrans.cn/87/8645/864401/864401_4.png

Omniscient 发表于 2025-3-22 11:07:58

Book 2023er to have a consistent physics, and distinct self-adjoint extensions describe different physics.Realising observables self-adjointly is the first fundamental problem of quantum-mechanical modelling..The discussed applications concern models of topical relevance in modern mathematical physics curren

Absenteeism 发表于 2025-3-22 12:56:46

http://reply.papertrans.cn/87/8645/864401/864401_6.png

Deadpan 发表于 2025-3-22 20:07:09

http://reply.papertrans.cn/87/8645/864401/864401_7.png

挣扎 发表于 2025-3-22 21:43:14

http://reply.papertrans.cn/87/8645/864401/864401_8.png

Graphite 发表于 2025-3-23 02:30:13

At this point, the best option seems to be a recursive algorithm whose “base case” is the 2 x 2 problem described here. The greatest obstacle to inverting the . x . problem will be slℓving highly non-linear consistency conditions analogous to the cubics and quadratics described above. If the two-di

Radiation 发表于 2025-3-23 06:56:06

Matteo Gallone,Alessandro Michelangeli At this point, the best option seems to be a recursive algorithm whose “base case” is the 2 x 2 problem described here. The greatest obstacle to inverting the . x . problem will be slℓving highly non-linear consistency conditions analogous to the cubics and quadratics described above. If the two-di
页: [1] 2 3 4
查看完整版本: Titlebook: Self-Adjoint Extension Schemes and Modern Applications to Quantum Hamiltonians; Matteo Gallone,Alessandro Michelangeli Book 2023 The Edito