Thymus 发表于 2025-3-25 06:46:35
http://reply.papertrans.cn/87/8636/863529/863529_21.pngemission 发表于 2025-3-25 08:14:12
http://reply.papertrans.cn/87/8636/863529/863529_22.png祝贺 发表于 2025-3-25 13:40:12
Meng Shen,Xiangyun Tang,Liehuang ZhuDelivers a comprehensive introduction of security and privacy in Web 3.0, along with practical defense frameworks.Explores privacy computing, data asset protection, and behavior analysis within the arplasma 发表于 2025-3-25 17:29:47
Digital Privacy and Securityhttp://image.papertrans.cn/s/image/863529.jpgRepatriate 发表于 2025-3-25 22:04:06
https://doi.org/10.1007/978-981-97-5752-7Web 3; 0;Blockchain; Privacy Protection; Privacy Computing; Federated Learning, ; Device Authentication;方舟 发表于 2025-3-26 00:07:53
978-981-97-5754-1The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature SingaporIngenuity 发表于 2025-3-26 07:13:46
Security and Privacy in Web 3.0978-981-97-5752-7Series ISSN 2731-992X Series E-ISSN 2731-9938植物群 发表于 2025-3-26 11:30:57
http://reply.papertrans.cn/87/8636/863529/863529_28.pngBasilar-Artery 发表于 2025-3-26 15:59:44
Security and Privacy Defense Framework for Web 3.0,.0, while offering numerous advantages, presents unique challenges such as ensuring privacy protection, authentication and behavior identification, and the auditing of data asset transactions. To navigate these complexities, we propose a comprehensive security and privacy defense framework for Web 3索赔 发表于 2025-3-26 17:31:49
Verifiable Privacy-Preserving Federated Learning in Web 3.0,plete sovereignty and ownership over their data in Web 3.0. However, the high degree of personal control over data limits the mobility and interoperability of data, forming data silos that restrict the development of Web 3.0. As an advanced paradigm that breaks down data silos, federated learning ca