pulse-pressure
发表于 2025-3-26 23:15:10
http://reply.papertrans.cn/87/8636/863525/863525_31.png
Tortuous
发表于 2025-3-27 03:03:01
http://reply.papertrans.cn/87/8636/863525/863525_32.png
正面
发表于 2025-3-27 08:00:44
http://reply.papertrans.cn/87/8636/863525/863525_33.png
压碎
发表于 2025-3-27 11:12:53
http://reply.papertrans.cn/87/8636/863525/863525_34.png
Colonnade
发表于 2025-3-27 15:53:27
FedBC: An Efficient and Privacy-Preserving Federated Consensus Schemeeless, semi-trusted cloud platforms can infer the actual data distribution of local users via intermediate characteristics such as gradients. The blockchain proposal has resolved the challenge of consistency in decentralized data sharing. It is difficult to guarantee the accuracy of the block’s data
榨取
发表于 2025-3-27 18:04:16
http://reply.papertrans.cn/87/8636/863525/863525_36.png
choleretic
发表于 2025-3-27 23:11:07
http://reply.papertrans.cn/87/8636/863525/863525_37.png
委屈
发表于 2025-3-28 05:44:37
http://reply.papertrans.cn/87/8636/863525/863525_38.png
CLASP
发表于 2025-3-28 07:25:51
A Privacy-Preserving Federated Learning with Mutual Verification on Vector Spacess. In this paper, we consider two security issues in the training process of federated learning, i.e., privacy preservation and message verification, which mainly consider the security of the local gradients uploaded by clients and the aggregation result. We give the detail design about the privacy
掺和
发表于 2025-3-28 13:29:19
http://reply.papertrans.cn/87/8636/863525/863525_40.png