分类 发表于 2025-3-21 18:01:13

书目名称Second Order PDE‘s in Finite and Infinite Dimension影响因子(影响力)<br>        http://figure.impactfactor.cn/if/?ISSN=BK0863159<br><br>        <br><br>书目名称Second Order PDE‘s in Finite and Infinite Dimension影响因子(影响力)学科排名<br>        http://figure.impactfactor.cn/ifr/?ISSN=BK0863159<br><br>        <br><br>书目名称Second Order PDE‘s in Finite and Infinite Dimension网络公开度<br>        http://figure.impactfactor.cn/at/?ISSN=BK0863159<br><br>        <br><br>书目名称Second Order PDE‘s in Finite and Infinite Dimension网络公开度学科排名<br>        http://figure.impactfactor.cn/atr/?ISSN=BK0863159<br><br>        <br><br>书目名称Second Order PDE‘s in Finite and Infinite Dimension被引频次<br>        http://figure.impactfactor.cn/tc/?ISSN=BK0863159<br><br>        <br><br>书目名称Second Order PDE‘s in Finite and Infinite Dimension被引频次学科排名<br>        http://figure.impactfactor.cn/tcr/?ISSN=BK0863159<br><br>        <br><br>书目名称Second Order PDE‘s in Finite and Infinite Dimension年度引用<br>        http://figure.impactfactor.cn/ii/?ISSN=BK0863159<br><br>        <br><br>书目名称Second Order PDE‘s in Finite and Infinite Dimension年度引用学科排名<br>        http://figure.impactfactor.cn/iir/?ISSN=BK0863159<br><br>        <br><br>书目名称Second Order PDE‘s in Finite and Infinite Dimension读者反馈<br>        http://figure.impactfactor.cn/5y/?ISSN=BK0863159<br><br>        <br><br>书目名称Second Order PDE‘s in Finite and Infinite Dimension读者反馈学科排名<br>        http://figure.impactfactor.cn/5yr/?ISSN=BK0863159<br><br>        <br><br>

最后一个 发表于 2025-3-21 23:08:50

Smooth dependence on data for the SPDE: the non-Lipschitz case (I),In the previous two chapters we have been dealing with stochastic reaction-diffusion systems of the following type . In those two chapters the reaction term .(ξ,.) is assumed to have bounded derivatives, uniformly with respect to

展览 发表于 2025-3-22 01:45:04

Smooth dependence on data for the SPDE: the non-Lipschitz case (II),In the previous chapter we have studied the regularizing properties of the transition semigroup associated with the stochastic reaction-diffusion system . = [.+.]. + .(0) = ., (7.0.1) in the Banach space . of continuous functions. In this chapter we study the same problem, but in the Hilbert space . of square integrable functions.

ARENA 发表于 2025-3-22 06:23:54

Hamilton- Jacobi-Bellman equations in Hilbert spaces,We are here concerned with the study of the following class of infinite dimensional Hamilton-Jacobi-Bellman problems . and .where . is the diffusion operator associated with the system (6.0.1), that is

hieroglyphic 发表于 2025-3-22 12:00:52

http://reply.papertrans.cn/87/8632/863159/863159_5.png

superfluous 发表于 2025-3-22 13:05:14

Sandra CerraiIncludes supplementary material:

Sinus-Rhythm 发表于 2025-3-22 17:59:59

978-3-540-42136-8Springer-Verlag Berlin Heidelberg 2001

Concerto 发表于 2025-3-22 21:49:02

Second Order PDE‘s in Finite and Infinite Dimension978-3-540-45147-1Series ISSN 0075-8434 Series E-ISSN 1617-9692

AGOG 发表于 2025-3-23 03:38:08

Introduction,e . = (. . .,... ,. .(.)) is a standard .-dimensional Brownian motion, the vector field . : ℝ. → ℝ. and the matrix valued function σ : ℝ. → ℒ(ℝ.) are smooth and have polynomial growth together with their derivatives and b enjoys some dissipativity conditions.

enhance 发表于 2025-3-23 06:12:11

http://reply.papertrans.cn/87/8632/863159/863159_10.png
页: [1] 2 3 4 5
查看完整版本: Titlebook: Second Order PDE‘s in Finite and Infinite Dimension; A Probabilistic Appr Sandra Cerrai Book 2001 Springer-Verlag Berlin Heidelberg 2001 Ko