和善 发表于 2025-3-21 16:59:01
书目名称Scheduling with Time-Changing Effects and Rate-Modifying Activities影响因子(影响力)<br> http://figure.impactfactor.cn/if/?ISSN=BK0861367<br><br> <br><br>书目名称Scheduling with Time-Changing Effects and Rate-Modifying Activities影响因子(影响力)学科排名<br> http://figure.impactfactor.cn/ifr/?ISSN=BK0861367<br><br> <br><br>书目名称Scheduling with Time-Changing Effects and Rate-Modifying Activities网络公开度<br> http://figure.impactfactor.cn/at/?ISSN=BK0861367<br><br> <br><br>书目名称Scheduling with Time-Changing Effects and Rate-Modifying Activities网络公开度学科排名<br> http://figure.impactfactor.cn/atr/?ISSN=BK0861367<br><br> <br><br>书目名称Scheduling with Time-Changing Effects and Rate-Modifying Activities被引频次<br> http://figure.impactfactor.cn/tc/?ISSN=BK0861367<br><br> <br><br>书目名称Scheduling with Time-Changing Effects and Rate-Modifying Activities被引频次学科排名<br> http://figure.impactfactor.cn/tcr/?ISSN=BK0861367<br><br> <br><br>书目名称Scheduling with Time-Changing Effects and Rate-Modifying Activities年度引用<br> http://figure.impactfactor.cn/ii/?ISSN=BK0861367<br><br> <br><br>书目名称Scheduling with Time-Changing Effects and Rate-Modifying Activities年度引用学科排名<br> http://figure.impactfactor.cn/iir/?ISSN=BK0861367<br><br> <br><br>书目名称Scheduling with Time-Changing Effects and Rate-Modifying Activities读者反馈<br> http://figure.impactfactor.cn/5y/?ISSN=BK0861367<br><br> <br><br>书目名称Scheduling with Time-Changing Effects and Rate-Modifying Activities读者反馈学科排名<br> http://figure.impactfactor.cn/5yr/?ISSN=BK0861367<br><br> <br><br>STANT 发表于 2025-3-21 20:14:42
Scheduling with Time-Changing Effects and Rate-Modifying Activities978-3-319-39574-6Series ISSN 0884-8289 Series E-ISSN 2214-7934Contort 发表于 2025-3-22 00:43:58
http://reply.papertrans.cn/87/8614/861367/861367_3.png灰心丧气 发表于 2025-3-22 05:28:51
http://reply.papertrans.cn/87/8614/861367/861367_4.png换话题 发表于 2025-3-22 10:12:12
http://reply.papertrans.cn/87/8614/861367/861367_5.png编辑才信任 发表于 2025-3-22 13:38:40
Relevant Boolean Programming ProblemsQuite often, an algorithm that finds either an exact or an approximate solution to a scheduling problem can be derived from a reformulation of the original problem in terms of another problem of combinatorial optimization, e.g., a Boolean programming problem.libertine 发表于 2025-3-22 19:58:42
http://reply.papertrans.cn/87/8614/861367/861367_7.pngcartilage 发表于 2025-3-23 01:16:22
http://reply.papertrans.cn/87/8614/861367/861367_8.png复习 发表于 2025-3-23 03:33:07
http://reply.papertrans.cn/87/8614/861367/861367_9.pngmisshapen 发表于 2025-3-23 09:32:16
http://reply.papertrans.cn/87/8614/861367/861367_10.png