manifestation 发表于 2025-3-26 21:01:00
Sara Mannheimerelcourses in algebraic geometry or computational algebra. Prerequisites for the reader include linear algebra and a proof-oriented course. It is assumed that the reader has access to a computer algebra system. 978-3-319-37427-7978-3-319-16721-3Series ISSN 0172-6056 Series E-ISSN 2197-5604机密 发表于 2025-3-27 02:16:00
http://reply.papertrans.cn/87/8612/861114/861114_32.png轻触 发表于 2025-3-27 06:24:10
e topics involved a lot of abstract mathematics and were only taught in graduate school. But in the 1960‘s, Buchberger and Hironaka discovered new algorithms for manipulating systems of polynomial equations. Fueled by the development of computers fast enough to run these algorithms, the last two dec显而易见 发表于 2025-3-27 12:07:26
http://reply.papertrans.cn/87/8612/861114/861114_34.png伤心 发表于 2025-3-27 17:29:26
Sara Mannheimer, projective geometry and dimension theory.Fourth edition in.This text covers topics in algebraic geometry and commutative algebra with a strong perspective toward practical and computational aspects. The first four chapters form the core of the book. A comprehensive chart in the Preface illustrates有节制 发表于 2025-3-27 18:05:16
Sara Mannheimerill be zero in Buchberger’s algorithm. Those unnecessary .-polynomial remainder calculations are in fact the main computational bottleneck for the basic form of the algorithm. Finding ways to avoid them, or alternatively to replace them with less expensive computations, is the key to improving the e纠缠,缠绕 发表于 2025-3-28 00:13:30
http://reply.papertrans.cn/87/8612/861114/861114_37.pngCommonwealth 发表于 2025-3-28 04:43:45
http://reply.papertrans.cn/87/8612/861114/861114_38.png开始从未 发表于 2025-3-28 10:20:27
http://reply.papertrans.cn/87/8612/861114/861114_39.png初次登台 发表于 2025-3-28 13:18:31
http://reply.papertrans.cn/87/8612/861114/861114_40.png