毁坏 发表于 2025-3-26 22:28:58
the minimal number of generators of modules and ideals. The notion of a module over a ring R is a generalization of that of a vector space over a field k. The axioms are identical. But whereas every vector space possesses a basis, a module need not always have one. Modules possessing a basis are cal旅行路线 发表于 2025-3-27 01:26:05
http://reply.papertrans.cn/87/8612/861113/861113_32.pngmicroscopic 发表于 2025-3-27 06:13:46
http://reply.papertrans.cn/87/8612/861113/861113_33.pngcruise 发表于 2025-3-27 13:04:36
Lars Marius Garsholthe minimal number of generators of modules and ideals. The notion of a module over a ring R is a generalization of that of a vector space over a field k. The axioms are identical. But whereas every vector space possesses a basis, a module need not always have one. Modules possessing a basis are cal使显得不重要 发表于 2025-3-27 16:57:57
Hendrik Thomas,Rike Brecht,Bernd Markscheffel,Stephan Bode,Karsten Spekowiusted to the study of projective modules and the minimal number of generators of modules and ideals. The notion of a module over a ring R is a generalization of that of a vector space over a field k. The axioms are identical. But whereas every vector space possesses a basis, a module need not always hprosperity 发表于 2025-3-27 20:20:07
http://reply.papertrans.cn/87/8612/861113/861113_36.pngpalpitate 发表于 2025-3-28 00:54:07
http://reply.papertrans.cn/87/8612/861113/861113_37.pngmosque 发表于 2025-3-28 05:33:55
http://reply.papertrans.cn/87/8612/861113/861113_38.pngglucagon 发表于 2025-3-28 09:06:24
Tobias Hofmann,Martin Pradellated to the study of projective modules and the minimal number of generators of modules and ideals. The notion of a module over a ring R is a generalization of that of a vector space over a field k. The axioms are identical. But whereas every vector space possesses a basis, a module need not always h神秘 发表于 2025-3-28 12:10:56
http://reply.papertrans.cn/87/8612/861113/861113_40.png